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►  Multi Layers Perceptron (MLP) 
 

 

● Input image as a vector 
 

● Image 256 x 256  

 

 

● One single hidden layer, 

    𝒏[𝟏]= 𝟔𝟒  

     

𝒙(𝒊)  ∈ ℝ[𝟔𝟓𝟓𝟑𝟔×𝟏] 

# 𝒑𝒂𝒓𝒂𝒎 > 𝟒 𝑴 

Too much parameters to learn for image analysis 

Image analysis through CNN 
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►How to adapt neural networks for image analysis ? 
 

● Introduction of convolution layers 

 

 

 

 

 

 

 

 

 

 

 

 

 

● Shared parameters 
 

● Spatial consistency 
 

Much less parameters to learn ! 

Image analysis through CNN 
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Fundamental components 

Convolution layers 

Pooling leayers 

Receptive field 
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►  Parameters to learn – weights of convolutional filters 

 

 Conv  

● Ex. 𝟑 × 𝟑 filter size 
 

  # 𝒑𝒂𝒓𝒂𝒎 = 𝟑 × 𝟑 × 𝟑 + 𝟏 

  = 𝟐𝟖 
 

● Conv 

 Input image filtering + 
activation function 

 

 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑  

 

 
 

 

 

𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑 

Convolutional layer 
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𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑𝒔 

 

● Ex. 𝟑 × 𝟑 filter size 
 

  # 𝒑𝒂𝒓𝒂𝒎 

 = 𝟑𝟐 × (𝟑 × 𝟑 × 𝟑 + 𝟏) 

 = 𝟖𝟗𝟔 

 

Conv 

Convolutional layer 

►  Several feature maps per layer 
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𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑𝒔 

1st Conv 2nd Conv 

  
𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑𝒔 

Convolutional layer 

►  Multi-layers scheme 
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𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑𝒔 

2nd Conv 

 
𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒎𝒂𝒑𝒔 

 

● Ex. 𝟑 × 𝟑 filter size 
 

 # 𝒑𝒂𝒓𝒂𝒎 

 = 𝟑𝟐 × (𝟑 × 𝟑 × 𝟑𝟐 + 𝟏) 

 = 𝟗𝟐𝟒𝟖 

 

Convolutional layer 

►  Multi-layers scheme 
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● Applied separately to each feature 
map 
 

● Reduction of the spatial resolution of 
the feature maps 
 

● Reduction of the memory footprint / 
computational cost 
 

● Introduction of invariance properties 
for small translation, rotation and 
scaling 
 

Max pooling 

Pooling 
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Part of the input image that impacts the value of a given point 
on a feature map 

Receptive field 
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● Receptive field increases with the 
depth of a network 
 

● A large receptive field is essential to 
capture spatial contextual 
information 
 

● At a cost of higher number of 
parameters 
 

 
 

How to have a large receptive field without too many 
parameters ? 

Receptive field 
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Applications 
 

Image classification 
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Predict a single class (or a probability distribution for a set of classes) 
for a given image 

Dog - 10% 

Cat - 85% 

Horse - 5% 

Cow - 0% 

Image classification 
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What a human sees What a computer sees 

Some difficulties 
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Observation point of view 

Illumination conditions 

Scale 
change 

Deformation Occlusion 

Intra-class variation Texture 

Simple for a human, what about for a computer ? 

Others difficulties 
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● Challenge for image classification (2010  → 2017) 
 

● 1 000 object classes to recognize 
 

● 1 431 167 images 
 

ImageNet 
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►Annual ranking 
 

ImageNet 



18  

AlexNet 

[Krizhevsky, NIPS, 2012] 
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AlexNet 
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● First deep network to work nicely on 
ImageNet 
 

● Exploit fundamental steps that are still 
using (ReLU, data augmentation, 
dropout) 
 

● 8 convolutional layers 
 

● # param ~ 62M 
 

● Use GPU for training 
 

 
 

Responsible for the deep learning 
revolution in computer vision 

AlexNet 
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[Simonyan and Zisserman, arxiv, 2014] 

VGG 
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Cascade 2 convolutions of size 𝟑 × 𝟑 
produces the same receptive field than a 

single convolution of size 𝟓 × 𝟓 but with few 
parameters 

● Simpler architecture 

 
● Deeper network 

 
● Key idea: 

 

 
 

𝟑 × 𝟑 convolutions, ReLU and 𝟐 × 𝟐 
max pooling 

17 layers (vs 8 layer for AlexNet) 

VGG 
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[Szegedy, CVPR, 2015] 

GoogLeNet 
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►Network completely redesigned to be very deep 
 

1) Repetitive blocks 
Inception module 2) Intermediate loss function to inject 

gradients into the intermediate layers 

3) Fully connect layers 
replaced by average pooling 

(less parameters) 

GoogLeNet 
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►Choice for each layer 
 

● Convolution or pooling ? 
 

● If convolution, what size of filter ? 

 

Previous layer 

1x1 
convolution 

3x3 
convolution 

5x5 
convolution 

3x3 
Max pooling 

? 

? 

? 

? 

Inception module 
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Previous layer 

1x1 
convolution 

3x3 
convolution 

5x5 
convolution 

3x3 
Max pooling 

Concatenation 
filter 

Difficulty: too much outputs and parameters 

Inception module 

►Key idea 

● Compute each output in parallel 

● Concatenation of the results 

● Let the learning process choose ! 
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Acts as a feature pooling function that can be learned 

►Key idea: 𝟏 × 𝟏 convolution  

W 

H 

F 

K filters (1x1) 

W 

H 

K 

Dimension reduction for K<F 

Inception module 
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Dimension reduction through bottleneck layers composed by 
𝟏 × 𝟏 convolutions 

Previous layer 

1x1 
convolution 

3x3 
convolution 

5x5 
convolution 

1x1 
convolution 

Concatenation 
filter 

1x1 
convolution 

1x1 
convolution 

3x3 
Max pooling 

►Key idea 

Inception module 
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AlexNet 

8 layers 
# param ~ 62M 

GoogLeNet 

22 layers  
# param ~ 5M 

GoogLeNet has 12x less parameters than AlexNet ! 

Efficiency 
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[He, CVPR, 2016] 

ResNet 
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►What happens to an even deeper network? 

 

● Higher training and testing errors! 

Optimization problem: vanishing gradient 

ResNet 
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►Benefits 
 

● Modeling of less information, potentially easier to learn 
 

● Residual connections preserve the gradient flow during back 
propagation 
 

● Possible design of very deep architectures (> 100 layers) 

Estimate residual rather than the 
transformation itself 

ResNet 

►Key idea 
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ResNet 
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The features calculated in a layer are concatenated with the inputs of 
all other layers in a block 

● Efficient use of multi-scale 
features 
 

● Gradient propagation through 
each layer during back 
propagation 

[Huang, CVPR, 2017] 

DenseNet (Densely connected) 

►Key idea 
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Applications 
 

Semantic segmentation 
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Input image 

Background 

Dog 
Cat 

Segmentation 

Can be seen as a dense and structured classification problem 

►Predict the right class for each pixel of an image 

 

Semantic segmentation 
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Standard CNN for 
classification 

Fully-CNN 

● Generation of very coarse segmentation maps 

Adding oversampling operations at the end of the network 

Fully-CNN: from classification to segmentation tasks 

[Long, ICCV, 2015] 

cat 
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Padding 2, stride 1 

Increased spatial dimension 

Oversampling layer 
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Input image Output 

Pooling 

Conv + BN + ReLU 

Upsampling 

Softmax 

● Spatial resolution lost during subsampling 

Adding of skip connections between the encoder and the decoder 

Encoder / decoder based architectures 

[Badrinarayanan, PAMI, 2017] 
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Input 
image 

Segmentation 
maps 

64 

128 

256 

512 

1024 

512 

256 

128 

64 2 

Skip connection 

Pooling 

Conv 3x3 + ReLU 

Upsampling 

Conv 1x1 

U-Net 

[Ronneberger, MICCAI, 2015] 
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Exploit all the good ideas to create a light and efficient 
network 

►Key points 
 

● Expression of the input image in an optimal space with reduced 
dimensions 
 

● ResNet-based architecture to create a deep network 
 

● Use of features pooling (1x1 conv) to reduce the total number of 
parameters 

ENet 

[Paszke, arXiv, 2016] 
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►Modeling of the input image 
 

 

ENet 
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►ResNet-based architecture 

 

ResNet block ENet block 

Projection / reduction 
of dimensionality 

Information creation 

Expansion of info. 
through channels 

Regularisation 

ENet 
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►Asymmetric architecture 
 

 

Encoder 

Decoder 

ENet 
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►Performances 
 

● Segmentation quality equivalent or better than the state-of-the 
art in deep learning 
 

● # parameters: 0.37 M 
 

● Network size < 6 MB 
 

● Execution time (NVIDIA TitanX)   
 

 640x360 px        =>       7 ms 

 1280x720 px      =>     21 ms 

 1920x1080 px    =>    46 ms 

 

ENet 
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Applications 
 

Object detection 
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Input image 

Dog 

Cat 

Detected classes 

Find the objects/classes present in an image and their location 

Object detection 
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►Training stage 
 

 

Several training stage (CNN, SVM, regression for bounding box) 

R-CNN (Region-CNN) 

[Girshick, CVPR, 2014] 
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►Region extraction 
 

 

Significant generation of bad candidates 

● Classical method using graph 

R-CNN (Region-CNN) 
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► Inference stage 
 

 

Very slow (~𝟓𝟎 𝒔 par image) 

● Extraction of the region 
proposal 
 

● Inferences over 2000 
regions 

R-CNN (Region-CNN) 
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Extraction of the region proposals remains a 
weak point of the method 

● 20x faster than R-CNN during inference ! 

For each region 

Fast R-CNN 
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End-to-end trainable network ! 

● Integration of a region proposal network 

For each region 

Faster R-CNN 

[Ren, NIPS, 2017] 
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Region Proposal Network (RPN) 

[Ren, NIPS, 2017] 

𝑾 × 𝑯 × 𝟗  detected regions 
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0 15 30 45 

49 

2,3 

0,2 

R-CNN 

Fast-CNN 

Faster-CNN 

seconds 

Execution performance (inference stage) 
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Applications 
 

Instance segmentation 
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Input image Segmented result 

Cat 1 Cat 2 

Dog 

Detects and segments all instances of objects/classes present 
in an image 

Instance segmentation 
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mask 

● Faster R-CNN architecture 

● Add a 4th branch for segmentation 

● Inference time: 5 fps 

Mask R-CNN 

[He, ICCV, 2017] 
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Mask R-CNN 

►Example of application – self-driving car 
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Illustration of the use of CNNs in 
medical application 

 
 

Deep learning in cardio-vascular 
imaging 
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Fully-connected neural 
network 

Convolutional neural 
networks 

Fully convolutional neural 
networks 

Recurrent neural 
network 

Generative adversarial 
network 

Many methods have been successfully applied so far 

►Algorithms 
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Many methods have been successfully applied so far 

►Applications 

Plaque risk assessment Calcium scoring 

Calcium Score Risk  

0 Very low 

1-99 Low 

100-399 Moderate 

> 400 High 

Ejection fraction 
estimation 

Content-based image retrieval CT dose reduction 
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Quantification of clinical indices in 
MRI 

Report generation for cardiac 
valves in US 

Calcium deposit detection in CT 

Many methods have been successfully applied so far 
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Automatic quantification of cardiac 
volumes and clinical indices  
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Segmentation of cardiac structures 

►MR imaging 

Basal 

Mid 

Apical 

Left ventricle (LV) 

Myocardium (MYO) 

Right ventricle (RV) 

 

● Clinical indices 
 LV volumes 

 RV volumes 

 MYO masse 

 LV/RV ejection 
fraction 
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Segmentation of cardiac structures 

[Bernard, IEEE TMI, 2018] 

● Important literature 

● Several open access datasets with online evaluation platform 

● Capacity to compare and still improve methods 

● Information on the inter / intra observer variability 
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Ensemble U-Net segmentation method 

[Isensee, Miccai, 2017] 

►One of the current best performing methods on ACDC dataset 

● Cross-entropy loss  

  3D U-Net 
 

● Multiclass Dice loss 

  2D U-Net 
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Ensemble U-Net segmentation method 

Methods 
Left Ventricle  

Haus. dist. (mm) 

Right Ventricle  
Haus. dist. 

(mm) 

Myocardium 
Haus. dist. 

(mm) 

Inter-observer 7,1 13,2 7,4 

Intra-observer 4,7 8,4 5,6 

Isensee et al. 6,2 9,9 7,2 

Methods 
LV Eject. Fract.  

Correlation 
RV Ejec. Frac.  
Correlation 

Myo. Mass. 
Correlation 

Isensee et al. 0,997 0,910 0,987 

Anatomical metrics 

Clinical metrics 

High segmentation quality 

With few incoherence 
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How to guarantee 
anatomical coherence of 

the segmentation results ?  
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[Painchaud, IEEE TMI, 2020] 

Efficient encoding of anatomical 
shapes in a latent space 

Cardiac segmentation with strong anatomical guarantees  
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16 anatomical metrics 

Cardiac segmentation with strong anatomical guarantees  
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Correction of segmentation to 
guarantee the plausibility of 

anatomical shapes 

Almost same accuracy than the 
original methods but with correct 

anatomical shapes 

Cardiac segmentation with strong anatomical guarantees  
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Segmentation of cardiac structures 

Left atrium 

Myocardium 

Left ventricle 

 

● Clinical indices 
 LV volumes 

 LV ejection 
fraction 

 

Apical 2 
chambers 

view 

Apical 4 
chambers 

view 

►US imaging 
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● Less literature compared to MRI 

● Few open access datasets with online evaluation platform 

● Capacity to compare and still improve methods 

● Information on the inter / intra observer variability 

 

 

 
 

Segmentation of cardiac structures 

[Leclerc, IEEE TMI, 2019] 
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►One of the current best performing methods on CAMUS dataset 
 

 

 

 
 

Shared features for motion and 
segmentation tasks 

Temporal-consistent segmentation method 

[Wei, Miccai, 2020] 
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Temporal-consistent segmentation method 
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Methods 
LV endocardium 
Haus. dist. (mm) 

LV epicardium  
Haus. dist. 

(mm) 

Left atrium 
Haus. dist. 

(mm) 

Inter-observer 7,1 7,5 - 

Intra-observer 4,6 5,0 - 

Wei et al. 4,6 4,9 5,0 

Methods 
LV volume ED  

Correlation 
LV volume ES 
Correlation 

LV Eject. Fract.  
Correlation 

Inter-observer 0,940 0,956 0,801 

Intra-observer 0,978 0,981 0,896 

Wei et al. 0,958 0,979 0,926 

Anatomical metrics 

Clinical metrics 

High segmentation quality with 
temporal consistency 

ED (t=1) t=4 

t=7 ES (t=11) 

Temporal-consistent segmentation method 
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Automatic quantification of cardiac volumes 

► Is the problem solved ? 

1. Needs for the clinicians to reinforce the annotation 
recommendations 
 

2. Validation on complete (>1000) datasets with multi-centers / 
multi-vendors 
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Calcium deposit detection 
in low dose chest CT scans 



79  [Lessmann, IEEE TMI, 2017] 

► Low dose chest CT scans acquired for lung cancer 
screening enable 
 

Quantification of atherosclerotic calcification 
 

 Identification of subjects at increased 
cardiovascular risk 

Possibility to complement lung cancer screening programs 
to help identify subjects at elevated cardiovascular risk 

without the need for further imaging ! 

►CT imaging 

Calcium deposit detection in low dose chest CT scans 
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● 3D CT scans from 1744 patients 
 

● Multi-centers 

 31 medical centers 
 

● Multi-vendors 

 13 different scanner models 
 

● Inter-observer assessment  

 subset of 100 scans 

 annotation from 3 experts 

 

Dataset 
 

● Manually labeled 

 distributed among 5 experts 
 

● Calcifications segmented in 

 Coronary arteries 

 Aorta 

 Aortic and mitral valves 
 

● Time spent 

 5-10 min. for easy cases 

 60-90 min. for difficult cases 

Annotations 

Calcium deposit detection in low dose chest CT scans 
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► 2 steps CNN approaches with varying receptive field 

● First network 
 

 Large receptive field (RF) 

 Patches: 155 px2 

 RF: 131 px2 

 

 Cross entropy losses 
 

 Increasing dilation 
coefficient 

 
 

Calcium deposit detection in low dose chest CT scans 
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► 2 steps CNN approaches with varying receptive field 

● Second network 
 

 Classify true positive and 
false positive from 1st CNN 
results 
 

 Smaller receptive field (RF) 

 Patches: 65 px2 

 RF: 65 px2 

 

 Single cross entropy loss 

 
 

Calcium deposit detection in low dose chest CT scans 
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►Overall performance 

Classification results 

Confusion matrix 

Calcium score categories 
 

I    0-10  II    11-100 

III    101-1000  IV    > 1000 

90% of agreements 

Calcium deposit detection in low dose chest CT scans 
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Report generation of 
cardiac valves in US 
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Conventional Doppler exams 

►US imaging 

Report generation for cardiac valves in US 

[Moradi, Miccai, 2016] 
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► Important source of information without annotation but 
with clinical reports 
 

►Automatic labeling of semantic concepts  

● Imaged valve 

● Disease type 

● Severity 
 

►How to automatically label this huge source of information 
in an a posteriori manner ? 

 

 

 
 

Report generation for cardiac valves in US 
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Doc2Vec 
network 

Learning of a fixed length vector 
representation of text paragraph 

● Input 
 10253 text 

paragraphs with 
valve labels from 
clinical reports 

 

● Output 

 Text feature vector of 
size m 

Report generation for cardiac valves in US 
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Report generation for cardiac valves in US 

Transform network: from image to 
text feature 

VGG backbone 
Estimated 

text feature 

 

● Learning phase 
 226 images and 

corresponding text reports 

Input Doppler Reference 
report 

Reference 
Text feature 

Mean 
Euclidean 

Distance Loss 
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Report generation for cardiac valves in US 

Doc2Vec 
network 

Compute 
distances 

Find the closed text report 
from the text dataset 
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Report generation for cardiac valves in US 

Extraction of semantic descriptors 
from the retrieved paragraphs 

 

● Automatic extraction of 
 Valve type 

 Valve disease 

 Pathology severity  
 

● Performances 
 Small validation on 48 tested samples 

 91% of correct disease classification 

 77% of correct disease severity 
classification 
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That’s all folks 
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1 

2 

1 
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ED (t=1) t=4 

t=7 ES (t=11) 


