Deep learning for medical imaging school 2021

April 19-24 2021

Virtual edition

Fundamental concepts of deep learning

From the description of conventional architectures to medical imaging applications

olivier.bernard@insa-lyon.fr christian.desrosiers@etsmtl.ca

Image analysis through CNN

- Input image as a vector
- Image 256 x 256

 $x^{(i)} \in \mathbb{R}^{[65536 \times 1]}$

• One single hidden layer, $n^{[1]} = 64$

param > 4 M

Too much parameters to learn for image analysis

Image analysis through CNN

How to adapt neural networks for image analysis ?

Introduction of convolution layers

- Shared parameters
- Spatial consistency

Much less parameters to learn !

Fundamental components

Convolution layers Pooling leayers *Receptive field* Parameters to learn – weights of convolutional filters

• *Ex.* 3×3 filter size

 $# param = 3 \times 3 \times 3 + 1$ = 28

• Conv

Input image filtering + activation function

feature map

Convolutional layer

Conv

feature maps

Convolutional layer

Multi-layers scheme

Convolutional layer

Multi-layers scheme

Pooling

- Applied separately to each feature map
- Reduction of the spatial resolution of the feature maps
- Reduction of the memory footprint / computational cost
- Introduction of invariance properties for small translation, rotation and scaling

Max pooling

135	212	189	56
164	201	204	145
30	126	189	156
36	45	38	12

212	204
126	189

Receptive field

Part of the input image that impacts the value of a given point on a feature map

Receptive field

- Receptive field increases with the depth of a network
- A large receptive field is essential to capture spatial contextual information
- At a cost of higher number of parameters

How to have a large receptive field without too many parameters ?

Applications

Image classification

Image classification

Predict a single class (or a probability distribution for a set of classes) for a given image

Some difficulties

What a human sees

What a computer sees

Others difficulties

Simple for a human, what about for a computer ?

ImageNet

- Challenge for image classification (2010 \rightarrow 2017)
- 1 000 object classes to recognize
- 1 431 167 images

ImageNet

Annual ranking

[Krizhevsky, NIPS, 2012]

AlexNet

AlexNet

- First deep network to work nicely on ImageNet
- Exploit fundamental steps that are still using (ReLU, data augmentation, dropout)
- 8 convolutional layers
- # param ~ 62M
- Use GPU for training

Responsible for the deep learning revolution in computer vision

Input
11 x 11 conv, 96
5 x 5 conv, 256
Pool
3 x 3 conv, 384
Pool
3 x 3 conv, 384
3 x 3 conv, 256
Pool
FC 4096
FC 4096
FC 1000
Softmax

VGG

[Simonyan and Zisserman, arxiv, 2014]

VGG

Simpler architecture

 3×3 convolutions, ReLU and 2×2 max pooling

• Deeper network

17 layers (vs 8 layer for AlexNet)

• Key idea:

Cascade 2 convolutions of size 3×3 produces the same receptive field than a single convolution of size 5×5 but with few parameters

Input 3 x 3 conv, 64 3 x 3 conv. 64 Pool x 3 conv. 128 x 3 conv. 128 Pool 3 x 3 conv, 256 3 x 3 conv. 256 Pool x 3 conv. 512 x 3 conv. 512 3 x 3 conv, 512 3 x 3 conv. 512 Pool 3 x 3 conv. 51 3 conv. 51 3 conv. 512 3 conv, 512 Pool FC 4096 FC 4096 FC 1000 Softmax

[Szegedy, CVPR, 2015]

Network completely redesigned to be very deep

Inception module

- Choice for each layer
 - Convolution or pooling ?
 - If convolution, what size of filter ?

Inception module

🕨 Key idea

- Compute each output in parallel
- Concatenation of the results
- Let the learning process choose !

Difficulty: too much outputs and parameters

Dimension reduction for K<F

Acts as a feature pooling function that can be learned

Inception module

► Key idea

Dimension reduction through bottleneck layers composed by 1×1 convolutions

Efficiency

AlexNet

8 layers # param \sim 62M

Input	11 x 11 conv, 96	5 x 5 conv, 256	Pool	3 x 3 conv, 384	Pool	3 x 3 conv, 384	3 x 3 conv, 256	Pool	FC 4096	FC 4096	FC 1000	Softmax
-------	------------------	-----------------	------	-----------------	------	-----------------	-----------------	------	---------	---------	---------	---------

GoogLeNet

22 layers # param \sim 5M

GoogLeNet has 12x less parameters than AlexNet !

[He, CVPR, 2016]

• Higher training and testing errors!

Optimization problem: *vanishing gradient*

Estimate residual rather than the transformation itself

Benefits

- Modeling of less information, potentially easier to learn
- Residual connections preserve the gradient flow during back propagation
- Possible design of very deep architectures (> 100 layers)

DenseNet (Densely connected)

🕨 Key idea

The features calculated in a layer are concatenated with the inputs of all other layers in a block

[Huang, CVPR, 2017]

Applications

Semantic segmentation

Semantic segmentation

Predict the right class for each pixel of an image

Input image

Segmentation

Can be seen as a dense and structured classification problem
Fully-CNN: from classification to segmentation tasks

[Long, ICCV, 2015]

Standard CNN for classification

Fully-CNN

• Generation of very coarse segmentation maps

Adding oversampling operations at the end of the network

Oversampling layer

Padding 2, stride 1 Increased spatial dimension

Encoder / decoder based architectures

[Badrinarayanan, PAMI, 2017]

• Spatial resolution lost during subsampling

Adding of skip connections between the encoder and the decoder

U-Net

[Ronneberger, MICCAI, 2015]

Exploit all the good ideas to create a light and efficient network

Key points

- Expression of the input image in an optimal space with reduced dimensions
- ResNet-based architecture to create a deep network
- Use of features pooling (1x1 conv) to reduce the total number of parameters

Modeling of the input image

ENet

ResNet-based architecture

ENet

Performances

- Segmentation quality equivalent or better than the state-of-the art in deep learning
- # parameters: 0.37 M
- Network size < 6 MB
- Execution time (NVIDIA TitanX)

640x360 px => 7 ms 1280x720 px => 21 ms 1920x1080 px => 46 ms

Applications

Object detection

Object detection

Input image

Detected classes

Find the objects/classes present in an image and their location

R-CNN (Region-CNN)

Training stage

Several training stage (CNN, SVM, regression for bounding box)

[Girshick, CVPR, 2014]

R-CNN (Region-CNN)

Region extraction

• Classical method using graph

Significant generation of bad candidates

Inference stage

Fast R-CNN

• 20x faster than R-CNN during inference !

Extraction of the region proposals remains a weak point of the method

Faster R-CNN

[Ren, NIPS, 2017]

Integration of a region proposal network

End-to-end trainable network !

Region Proposal Network (RPN)

[Ren, NIPS, 2017]

Execution performance (inference stage)

Applications

Instance segmentation

Instance segmentation

Input image

Segmented result

Detects and segments all instances of objects/classes present in an image

Mask R-CNN

[He, ICCV, 2017]

Mask R-CNN

Example of application – self-driving car

Illustration of the use of CNNs in medical application

Deep learning in cardio-vascular imaging

Many methods have been successfully applied so far

Algorithms

Fully-connected neural network

Convolutional neural networks

Fully convolutional neural networks

Recurrent neural network

Generative adversarial network

Many methods have been successfully applied so far

Applications

Plaque risk assessment

Calcium Score	Risk		
0	Very low		
1-99	Low		
100-399	Moderate		
> 400	High		

Calcium scoring

Ejection fraction estimation

Content-based image retrieval

CT dose reduction

Many methods have been successfully applied so far

Automatic quantification of cardiac volumes and clinical indices

Segmentation of cardiac structures

MR imaging

Myocardium (MYO)
 Left ventricle (LV)
 Right ventricle (RV)

- Clinical indices
 - ➔ LV volumes
 - ➔ RV volumes
 - MYO masse
 - LV/RV ejection fraction

Segmentation of cardiac structures

- Important literature
- Several open access datasets with online evaluation platform
- Capacity to compare and still improve methods
- Information on the inter / intra observer variability

CMRI datasets										
	T 7	Nb Subjects		Ground truth			Genericity		Online	
Name	Year	train	test	LV	RV	Муо	Pathology	\times Centre	\times Vendor	evaluation
Sunnybrook	2009	45		 	×	 ✓ 	v	×	×	×
STACOM	2011	100	100	~	×	 ✓ 	×	×	×	×
MICCAI RV	2012	16	32	×	~	×	×	×	×	×
Kaggle	2015	500	200	×	×	×	×	×	×	×
ACDC	2017	100	50	~	~	 ✓ 	 ✓ 	×	×	 ✓
M&Ms	2020	150	200	 ✓ 	~	 ✓ 	 ✓ 	 ✓ 	 ✓ 	×

[Bernard, IEEE TMI, 2018]

Ensemble U-Net segmentation method

One of the current best performing methods on ACDC dataset

[Isensee, Miccai, 2017]

Ensemble U-Net segmentation method

Anatomical metrics

Methods	Left Ventricle Haus. dist. (mm)	Right Ventricle Haus. dist. (mm)	Myocardium Haus. dist. (mm)	
Inter-observer	7,1	13,2	7,4	
Intra-observer	4,7	8,4	5,6	
Isensee et al.	6,2	9,9	7,2	

High segmentation quality

Clinical metrics

Methods	LV Eject. Fract.	RV Ejec. Frac.	Myo. Mass.	
	Correlation	Correlation	Correlation	
lsensee et al.	0,997	0,910	0,987	

With few incoherence

How to guarantee anatomical coherence of the segmentation results ?

Cardiac segmentation with strong anatomical guarantees

[Painchaud, IEEE TMI, 2020]

Cardiac segmentation with strong anatomical guarantees

16 anatomical metrics

Correction of segmentation to guarantee the plausibility of anatomical shapes

Almost same accuracy than the original methods but with correct anatomical shapes

Segmentation of cardiac structures

US imaging

Segmentation of cardiac structures

- Less literature compared to MRI
- Few open access datasets with online evaluation platform
- Capacity to compare and still improve methods
- Information on the inter / intra observer variability

						Echo	cardio	graphic da	tasets				
-	N	V	Nb Sul	bjects		Groun	d tru	th	Vi	ew	Gene	ericity	Online
	Name	Year	train	test	LV _{endo}	LV _{epi}	LA	Pathology	A4C	A2C	\times Centre	\times Vendor	evaluation
	CETUS	2014	15	30	 ✓ 	×	×	 ✓ 	~	~	 ✓ 	 ✓ 	×
	CAMUS	2019	450	50	 ✓ 	 ✓ 	~	 	 	~	×	×	 ✓
	EchoNet	2019	10036		 	×	×	 ✓ 	 	×	×		×

Temporal-consistent segmentation method

One of the current best performing methods on CAMUS dataset

[Wei, Miccai, 2020]

Temporal-consistent segmentation method

Temporal-consistent segmentation method

Anatomical metrics

Methods	LV endocardium Haus. dist. (mm)	LV epicardium Haus. dist. (mm)	Left atrium Haus. dist. (mm)			
Inter-observer	7,1	7,5	-			
Intra-observer	4,6	5,0	-			
Wei <i>et al.</i>	4,6	4,9	5,0			

High segmentation quality with temporal consistency

ED (t=1)

t=4

t=7

ES (t=11)

Clinical metrics

Methods	LV volume ED Correlation	LV volume ES Correlation	LV Eject. Fract. Correlation			
Inter-observer	0,940	0,956	0,801			
Intra-observer	0,978	0,981	0,896			
Wei <i>et al.</i>	0,958	0,979	0,926			

Automatic quantification of cardiac volumes

Is the problem solved ?

- 1. Needs for the clinicians to reinforce the annotation recommendations
- 2. Validation on complete (>1000) datasets with multi-centers / multi-vendors

ossibility to complement lung cancer screening programs to help identify subjects at elevated cardiovascular risk without the need for further imaging !

[Lessmann, IEEE TMI, 2017]

Dataset

- 3D CT scans from 1744 patients
- Multi-centers
 - 31 medical centers
- Multi-vendors
 - → 13 different scanner models
- Inter-observer assessment
 - ➔ subset of 100 scans
 - → annotation from 3 experts

Annotations

- Manually labeled
 → distributed among 5 experts
- Calcifications segmented in
 - Coronary arteries
 - Aorta
 - Aortic and mitral valves
- Time spent
 - → 5-10 min. for easy cases
 - → 60-90 min. for difficult cases

2 steps CNN approaches with varying receptive field

- First network
 - → Large receptive field (RF) Patches: 155 px² RF: 131 px²
 - Cross entropy losses
 - Increasing dilation coefficient

- 2 steps CNN approaches with varying receptive field
 - Second network
 - Classify true positive and false positive from 1st CNN results
 - Smaller receptive field (RF) Patches: 65 px² RF: 65 px²
 - ➔ Single cross entropy loss

Overall perfo	$\left(\right)$	Confusion matrix									
Classifica	Calcium score categories						11-100				
	CAC	LAD	LCX	RCA		→	101-1	000	IV	•	> 1000
Inter-observer Sensitivity (%) False positive vol. (mm ³) F ₁ score calcium	95 21 0.95	93 10 0.94	84 9 0.87	96 12 0.96		Ref	erence	Aut I	omat II	ic me	thod IV
Automatic method Sensitivity (%) False positive vol. (mm ³) F ₁ score calcium	91 35 0.90	92 18 0.90	72 14 0.72	91 11 0.90		I II III		90 3 0	17 59 2	1 4 99	0 0 2
							90%	0 of ag	o green	nents	32

US imaging

Conventional Doppler exams

[Moradi, Miccai, 2016]

Important source of information without annotation but with clinical reports

Automatic labeling of semantic concepts

- Imaged valve
- Disease type
- Severity

How to automatically label this huge source of information in an a posteriori manner ? Learning of a fixed length vector representation of text paragraph

- Input
 - 10253 text paragraphs with valve labels from clinical reports

• Output

Text feature vector of size m

Transform network: from image to text feature

- Learning phase
 - 226 images and corresponding text reports

Extraction of semantic descriptors from the retrieved paragraphs

- Automatic extraction of
 - → Valve type
 - ➔ Valve disease
 - Pathology severity

Performances

- → Small validation on 48 tested samples
- → 91% of correct disease classification
- → 77% of correct disease severity classification

That's all folks

ED (t=1)

t=7

ES (t=11)