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Image reconstruction

Magnetic Resonance Imaging
(faster, low-field etc.)

Computed Tomography
(low-dose, sparse-view)

Ultrasound
(high-quality, reduced data-rates)



Tx pulse
Ultrasonic probe

Rx signal

• Echoes result from scattering in the tissue
(Coherent & incoherent - speckle)

• The image is formed by estimating (reflected) signal 
amplitude from a set of spatial locations (i.e. pixels) 
using an array of sensors = Beamforming

Ultrasound imaging basics



High rate ADC 
(~20-50MHz / element)

Digital 
Beamforming

Channel DataTransmission Reconstructed RF scanline

Envelope-detected 
(&

 com
pressed) scanline

High-data ratesHundreds to thousands 
of channels/firing

Spatial filtering

Image from “Speckle reduction imaging” by Milkowski et al.

How much signal is reflected from 
this particular pixel?

Spatial filtering = beamforming
• Sidelobes & grating lobes
• Mainlobe width (resolution)

The better the spatial selectivity, 
The better the tissue contrast and resolution

Ultrasound imaging basics



Increased array aperture – increased angular resolution

1. Physics: array geometry and probe bandwidth 

2. Algorithms: powerful digital signal processing and beamforming on RF channel data

Be
am
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n

AI opportunity

Better spatial selectivity, 
Better tissue contrast and resolution

Image quality is a function of:

Ultrasound imaging basics



Parallel ultrafast acquisition
• High time-resolution 
• Compromising spatial resolution and contrast  
• Relies more heavily on receive spatial filtering/beamforming

High image quality under minimal data rates
• Improve tissue contrast (accurate contrast)
• Resolution depends on array aperture -> high-res with 

small/sparse aperture?
• Compressed sensing to reduce data rates at the probe

Full aperture

Small aperture (compact)

Sparse aperture (less data)

Ultrasound imaging AI opportunities
Focused transmit

Parallel ultrafast transmit



Image basics: MRI

Magnetic Resonance Imaging
(faster, low-field etc.)

Inverse 
FT

K-space

Total time ~ TR×amount of repetitions/lines

Pulse sequence

Can we go faster?



Image basics: MRI

Magnetic Resonance Imaging
(faster, low-field etc.)

Reconstruction 
algorithm

Sampling/
acquisition

Full K-space

Undersampled K-space

= less acquisitions = faster

Priors
𝑝(𝑥)?

𝑝 𝑦 𝑥 ?

𝑝 𝑥 𝑦 ?

How?



Image reconstruction

Magnetic Resonance Imaging
(faster, low-field etc.)

Fast MRI
• Compressed sensing/fewer acquisitions
• Acceleration
• Aliasing artefacts 

Low-field MRI
• Lower field strengths: compact MRI machines
• Low SNR k-space -> less clear high-frequencies -> low resolution



Image reconstruction

Low-dose CT
• Safer – less ionizing radiation
• Low SNR -> limited fidelity

Sparse CT
• reduced scan time and improved time resolution 
• Lower dose
• Undersampling artefacts

Computed Tomography
(low-dose, sparse-view)

Low High

Full Sparse



Image reconstruction

Magnetic Resonance Imaging
(faster, low-field etc.)

Computed Tomography
(low-dose, sparse-view)

Ultrasound
(high-quality, reduced data-rates)



What gaps can we fill by learning?

Acquisition model
assumptions incorrect/imprecise

Statistical image priors 
not sufficiently 

expressive/accurate

Slow image reconstruction with 
high complexity (e.g. iterative, 

matrix inversions etc)

Challenges in classical image recon based on models

𝑝(𝑥)



Acquisition model
assumptions incorrect/imprecise
(multiple scattering, aberration 

etc.)

: Likelihood of measurements given object 

Across our imaging pipeline and set of applications, 
can be: 

(1) RF channel data (array response)
(2) Beamformed RF data 
(3) Image data (beamformed + envelope detected)

High rate ADC 
(~20-50MHz / element)

Digital
Beamforming

Advanced 
signal processing 

applications
(1) (2) (3) 

Demod

Models and Priors: ultrasound



Acquisition model
assumptions incorrect/imprecise
(multiple scattering, aberration 

etc.)

Array response (narrowband) single target:

High rate ADC 
(~20-50MHz / element)

Digital
Beamforming

Models and Priors: ultrasound

Array response vector:
(assumed constant SoS, 
no aberration)

Noise vector:  Sensor noise
 Off-axis scattering/interference
 Reverberation

In practice complex statistics

Typical assumption: ௡
ଶ

MSE-optimal matched filter: ு ( = ) 

= delay-and-sum (DAS) for wideband



Acquisition model
assumptions incorrect/imprecise
(multiple scattering, aberration 

etc.)

Array response (narrowband) single target:

High rate ADC 
(~20-50MHz / element)

Digital
Beamforming

Models and Priors: ultrasound

Array response vector:
(assumed constant SoS, 
no aberration)

Noise vector:  Sensor noise
 Off-axis scattering/interference
 Reverberation

In practice complex statistics
Model-based alternatives to DAS:
 MVDR (minimize total (noise) power but retain unity gain) 
 iMAP (assume ௫

ଶ ; iteratively estimate ௫ ௡ per pixel)
 ADMIRE (aperture domain model of signal and 

noise/interference/clutter; separate using optimization methods)
Jensen et al.
Eldar et al.
Byram et al.



High rate ADC 
(~20-50MHz / element)

Digital
Beamforming

Models and Priors: ultrasound

Acquisition model
assumptions 

incorrect/imprecise
(multiple scattering, 

aberration etc.)

 DAS (matched filter)
 MVDR (minimize total (noise) power but retain unity gain) 
 iMAP (assume ௫

ଶ ; iteratively estimate ௫ ௡ per pixel)
 ADMIRE (aperture domain model of signal and 

noise/interference/clutter; separate using optimization methods)

General problem: model too simple / incomplete / 
or hard to solve due to suboptimal prior 

Statistical image 
priors 

not sufficiently 
expressive/accurate

𝒑(𝒙)



High rate ADC 
(~20-50MHz / element)

Digital
Beamforming

Models and Priors: ultrasound

Acquisition model
assumptions 

incorrect/imprecise
(multiple scattering, 

aberration etc.)

 DAS (matched filter)
 MVDR (minimize total (noise) power but retain unity gain) 
 iMAP (assume ௫

ଶ ; iteratively estimate ௫ ௡ per pixel)
 ADMIRE (aperture domain model of signal and 

noise/interference/clutter; separate using optimization methods)

General problem: model too simple / incomplete / 
or hard to solve due to suboptimal prior 

Statistical image 
priors 

not sufficiently 
expressive/accurate

𝒑(𝒙)

Slow image 
reconstruction

 𝑓(⋅)

௫
ିଵ



: Likelihood of measurements given object 

Models and Priors: MRI

K-space measurement:

Statistical image priors 
not sufficiently 

expressive/accurate

𝑝(𝑥)

General problem: prior not sufficiently expressive

: Subsampling matrix
: 2D Fourier transform

For low-field:  𝐧 is dominating higher frequencies
For fast-MRI:  𝐀 is sampling below Nyquist (compressed sensing)

Classical reconstruction: ି𝟏

Inverse (MAP) problem:

𝐱
ଵ

ଶ ଶ

ଶ
)

( = zero-filled 
k-space )

𝐱 )



What if we could improve our models using deep
learning without ending up just trowing away

what we do know about the problem?



How to bring together to get the best of both?

Van Sloun et al. Proceedings of the IEEE, 2020 

Solomon, … van Sloun, Eldar. IEEE trans. med. im., 2019

Complex statistical models 
Learns from data   

Deep Learning
Domain knowledge

Sensor physics 
Inductive biases

Theoretical guarantees 

Model-based algorithms

Luijten, …, Van Sloun. IEEE trans. med. im., 2020

Model-based deep learning

Unify



One step back: Model-based optimization

௞

Iterative model-based algorithm 
with input y and output x

General recipe: construct a model-based optimization algorithm based on a-priori 
knowledge of the measurement process and statistical priors

𝐱

Formulate MAP optimization problem:

Define measurement model with image of interest 𝐱 :

ି
ଵ
ଶ

𝐲ି𝐀𝐱 ೅𝚺షభ 𝐲ି୅𝐱

Likelihood model under Normal distribution: 

𝐱

𝐱
ଵ

ଶ
் ିଵ )

(assume uncorrelated noise)

𝐱
ଵ

ଶ ଶ

ଶ
) Many iterative solvers (for particular choices of  𝑝(𝐱))

ISTA, ADMM, etc.



Define measurement model with image of interest 𝐱 :

𝐱
ଵ

ଶ ଶ

ଶ
)

𝐱 ଶ

ଶ
ఏ

Iterative proximal gradient solvers:

(regularizer 𝑔ఏ parameterized by 𝜃) 

௞
𝐱 ଶ

ଶ

𝐱ୀ𝐱ೖ
ଵ

௞

௞ାଵ
𝐱 ଶ

ଶ
ఏ

2-step factorized optimization

Prior       Proximity function

General recipe: construct a model-based optimization algorithm based on a-priori 
knowledge of the measurement process and statistical priors

One step back: Model-based optimization

௞

Iterative model-based algorithm 
with input y and output x



General recipe: construct a model-based optimization algorithm based on a-priori 
knowledge of the measurement process and statistical priors

Define measurement model with image of interest 𝐱 :

𝐱
ଵ

ଶ ଶ

ଶ
)

ଵ

௞௞

Factorize

Typical structure 
optimization algorithm

௞

௞ିଵ
Factorized into prior step 
and data consistency step

(=data likelihood)

One step back: Model-based optimization

Prior       Proximity function



One step back: Model-based optimization
Example: sparse coding

           𝐱
ଶ
ଶ

ଵ

with 𝐱 being sparse
Sparse coding problem

MAP problem for 𝐱 :

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, …

ଵ

ଶ

ℓଵ - ball

0

Some intuition:

 𝐀𝐱 − 𝐲 ଶ
ଶ

𝐱 ଵ

−log 𝑝 𝐱  ~ 𝐱 ଵ

(𝐱~Laplace)



One step back: Model-based optimization
Example: sparse coding

           𝐱
ଶ
ଶ

ଵ

with 𝐱 being sparse
Sparse coding problem

MAP problem for 𝐱 :

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, …

ଵ

ଶ

ℓଵ - ball

0

Some intuition:

1. Take a gradient step towards min
𝐱

𝐀𝐱 − 𝐲 ଶ
ଶ

𝑆𝑜𝑙𝑣𝑒:     min
𝐱

 𝐱 − 𝐱ො(௜) 
ଶ

ଶ
+𝜆 𝐱 ଵ

= soft thresholding function 𝜆

2.    Move intermediate solution towards prior 

 𝐀𝐱 − 𝐲 ଶ
ଶ

𝐱 ଵ Iterative shrinkage and thresholding (ISTA)

−log 𝑝 𝐱  ~ 𝐱 ଵ

(𝐱~Laplace)

𝐱 − 𝜇𝛻𝐱 𝐀𝐱 − 𝐲 ଶ
ଶ

𝑆ఒ(𝐱ො(௜))



One step back: Model-based optimization
Example: sparse coding

           𝐱
ଶ
ଶ

ଵ

with 𝐱 being sparse
Sparse coding problem

MAP problem for 𝐱 :

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, …

Iterative shrinkage and thresholding (ISTA)
λ

I − 𝜇𝐀୘𝐀

௞+𝜇𝐀்

Proximity operator
Soft thresholding

Gradient update step w.r.t.
Likelihood term

ଵ

ଶ

ℓଵ - ball

0

Some intuition:

 𝐀𝐱 − 𝐲 ଶ
ଶ

𝐱 ଵ

min
𝐱

𝐱 − 𝐱ො(௜) 
ଶ

ଶ
+ 𝜆 𝐱 ଵ

𝐱 − 𝜇𝛻𝐱 𝐀𝐱 − 𝐲 ଶ
ଶ

−log 𝑝 𝐱  ~ 𝐱 ଵ

(𝐱~Laplace)

= 𝑆ఒ(𝐱ො(௜))
 𝑓ଵ(⋅)

 𝑓ଶ(⋅)



Model-based DL: Deep unfolding
General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn parameters. 

௞

Iterative model-based algorithm 
with input y and output x

Iterative 
algorithm

“Unfold” iterations

ଵ ଶ ௄

unfolded model-based algorithm 
with input y and output x

Learned iterative 
algorithm



Deep unfolding for sparse coding (LISTA)

“Unfold” iterations

λ

௞+𝜇𝐀்

I − 𝜇𝐀୘𝐀

+ +
λ଴ λଵ λ௄

௄

Deep learning with a model-based signal prior
• Learn the weight matrices/convolutions 𝑊௜

• Learn the thresholding parameters 𝜆௜

• Use the prior (sparsity) and optimization structure

Note: Network nonlinearity (activation function) 
follows directly from the prior!

Model-based layer

General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn parameters. 

ISTA

Learned(L)ISTA

Gregor & LeCun ICML 2010



Optimization with “plug and play priors”
General recipe: take a model-based optimization algorithm, …. what if we don’t 
know the prior, or it is complex to describe/model?

Define measurement model with image of interest 𝐱 :

𝐱
ଵ

ଶ ଶ

ଶ
)

𝐱 ଶ

ଶ
ఏ

Iterative proximal gradient methods:

(regularizer 𝑓ఏ parameterized by 𝜃) 

௞
𝐱 ଶ

ଶ

𝐱ୀ𝐱ೖ
ଵ

௞

௞ାଵ
𝐱 ଶ

ଶ
ఏ

2-step factorized optimization

Prior       Proximity function

Question: what is a good general choice for Prox(𝐳) in 
structured signals if you don’t know 𝑝 𝐱 ?

ଵ

௞

Typical structure 
optimization algorithm

௞

௞ିଵ

A high-performant denoiser
Meinhardt et al. ICCV 2017



Optimization with “plug and play priors”
General recipe: take a model-based optimization algorithm, “plug in” a high-
performant denoiser (e.g. trained deep neural network) as the Prox

Define measurement model with image of interest 𝐱 :

𝐱
ଵ

ଶ ଶ

ଶ
)

ଵ

௞௞

Factorize

Typical structure 
optimization algorithm

௞

௞ିଵ
Factorized into prior step 
and data consistency step

(=data likelihood)

Any properly trained denoiser
“Plugged in”

(denoising priors)

* Properly trained: under a certain Lipschitz condition
(Ryu et al., 2019)Meinhardt et al. ICCV 2017



Deep unfolding & end-to-end training
General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn proximal parameters. 

Define measurement model with image of interest 𝐱 :

𝐱
ଵ

ଶ ଶ

ଶ
)

ଵ

௞

Typical structure 
optimization algorithm

௞

௞ିଵ

“Unfold” 𝐊 iterations ଵ ௄

Networks can have 
independent parameters

Mardani et al. NeurIPS, 2018



Deep unfolding & end-to-end training
General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn all parameters. 

Define measurement model with image of interest 𝐱 :

𝐱
ଵ

ଶ ଶ

ଶ
)

ଵ

௞

Typical structure 
optimization algorithm

௞

௞ିଵ

“Unfold” 𝐊 iterations

ఏభ

ଵ ௄

ఏ಼

Networks can have 
independent parameters

Gradient update matrices 𝑊ଵ, 𝑊ଶ also learned

𝐱௞+𝑊ଵ
𝐲

𝑊ଶMardani et al. NeurIPS, 2018



Combining models, priors and deep learning
for image reconstruction: use-cases

Magnetic Resonance Imaging
(faster, low-field etc.)

Computed Tomography
(low-dose, sparse-view)

Ultrasound
(high-quality, reduced data-rates)



Combining models, priors and deep learning
for image reconstruction: use-cases

Ultrasound
(high-quality, reduced data-rates)



High rate ADC 
(~20-50MHz / element)

Digital
Beamforming

Channel DataTransmission 

High-data ratesHundreds to thousands 
of channels/firing

Spatial filtering

Opportunities for ultrasound

Advanced 
signal processing 

applications

Ultrasound localization microscopy
Shear wave imaging

Doppler/strain
Contrast agents 

….

AI opportunities across the entire imaging chain

Van Sloun, Cohen, Eldar, Proceedings of the IEEE, 2019



Adaptive beamforming by MVDR

MVDR
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Geometry-based time-space migraton + model-based adaptive apodization

ିଵ

ு ିଵ

Slow (𝑂(𝑁ଷ)), instable matrix inversions, 
relies on accurate estimates of statistics (model knowledge)

Jensen et al.



Luijten et al., IEEE ICASSP, 2019

Adaptive beamforming by deep learning (ABLE)
Luijten et al., IEEE trans. Med. Imag., 2020

AI agent
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Hybrid inference: Model-based computational graph with integrated NN

Fast & stable, 
learns actionable statistics & function from data



Note: without post-processing and s-curve
60 dB, log-scale

Delay-and-sum (standard)                                  Deep learning (ABLE)                                         Target (MVDR)

Adaptive beamforming by deep learning (ABLE)



Note: without post-processing and s-curve
60 dB, log-scale

Deep learning (ABLE)Standard

Less clutter
Higher resolution

High processing rates, 
and robustness

Adaptive beamforming by deep learning (ABLE)



Chennakeshava et al., IEEE IUS, 2020

ଵ

ଶ

ଷ

High-resolution plane-wave compounding

Measured input

Solve inverse problem:
Deep unfolding with end-to-end training

=
Model-based layers

𝐀ଵ, 𝐀ଶ, 𝐀ଷ
୘

OutputUnobserved
High-res object

Acquisition model



Chennakeshava et al., IEEE IUS, 2020

ଵ

ଶ

ଷ

High-resolution plane-wave compounding

Measured inputUnobserved
High-res object

Acquisition model

ఏభ

ଵ ௄

ఏ಼

Networks have 
independent parameters

Gradient update matrices 𝑊ଵ, 𝑊ଶ also learned

𝐱௞+𝑊ଵ
𝐲

𝑊ଶ

Acquisition 
model



Chennakeshava et al., IEEE IUS, 2020

High-resolution plane-wave compounding

Input images DL output Target



୲

ୠ

Spatiotemporal source-extraction/dehazing

Acquisition model

Measured 
mixed input

Independent 
signals

Solomon et al. IEEE trans. Med. Imag., 2019
van Sloun et al. Proceedings of the IEEE, 2020

Solve inverse problem:
Deep unfolding with end-to-end training

Model-based layers
Output

= +



Spatiotemporal source-extraction/dehazing

Solomon et al. IEEE trans. Med. Imag., 2019
van Sloun et al. Proceedings of the IEEE, 2020

Model-based layers

= +
Optimization problem: 

Prox-grad solution:
(iterative) 



Spatiotemporal source-extraction/dehazing

Solomon et al. IEEE trans. Med. Imag., 2019
van Sloun et al. Proceedings of the IEEE, 2020

Model-based layers

= +
Optimization problem: 

Prox-grad solution:
(iterative) 

Tissue

Blood+

+
Input 
frames

ISTA for RPCA Deep convolutional Robust PCA

Tissue+

Blood+

Deep unfolding



Standard contrast-ultrasound



Super-resolution contrast ultrsound by LISTA

Van Sloun et al., Proceedings of the IEEE, 2020
Van Sloun et al., IEEE trans. Med. Imag., 2020



Combining models, priors and deep learning
for image reconstruction: use-cases

Magnetic Resonance Imaging
(faster, low-field etc.)



MRI: learning acquisition
Van Gorp et al., in review

Object

Measurement

Next seq

Model-based 
AI

Reconstruction

Planning AI

Huijben et al., ICASSP 2020 Huijben et al., ICLR 2020



MRI: learning acquisition
Van Gorp et al., in review

Measurement

Next seq

Model-based
AI

Reconstruction

Planning AI

Huijben et al., ICASSP 2020 Huijben et al., ICLR 2020

Importance of model-based DL for recon:
• Factorizes knowledge
• Sampling and recon update directions 

‘decoupled’ during learning 

ଵ ௄

Acquisition/sampling changes directly update 𝒇()



MRI: learning sampling density mask
Huijben et al., ICASSP 2020 Huijben et al., ICLR 2020

Full sampling

Sampling
Low frequencies

Learned sampling PSNR: 36.2

PSNR: 35.8

Full k-space

Learned mask



MRI: learning active acquisition
Van Gorp et al., in review

K-space
Active line sampling

(cumulative) Reconstruction Target (full acquisition)

sampling actions

Method NMSE PSNR [dB] SSIM

Zhang et al., 2019 (active) 0.0398 28.8 0.610

Pineda et al., 2020 (active) 0.0371 29.2 0.623

Fixed learned sampling (ours) 0.0360 30.1 0.650

Active acquisition (ours) 0.0342 30.2 0.654

Factor 8 undersampling



Conclusions

Acquisition model
assumptions 

incorrect/imprecise

Statistical image priors 
not sufficiently 

expressive/accurate

Slow reconstruction 
with high complexity

 𝑓(⋅)

𝑝(𝑥)𝑝 𝑦 𝑥

 𝑓ఏభ
(⋅)

𝑦

𝑥ଵ 𝑥௄

 𝑓ఏ಼
(⋅)

Networks have 
independent parameters

Gradient update matrices 𝑊ଵ, 𝑊ଶ also learned



Thanks!


