Deep learning for medical
Image reconstruction

Models, priors and data

Ruud van Sloun



Image reconstruction

Magnetic Resonance Imaging Computed Tomography Ultrasound
(faster, low-field etc.) (low-dose, sparse-view) (high-quality, reduced data-rates)




Tx pulse

Ultrasound imaging basics

Ultrasonic probe

Rx signal

Echoes result from scattering in the tissue

(Coherent & incoherent - speckle)

The image is formed by estimating (reflected) signal
amplitude from a set of spatial locations (i.e. pixels)
using an array of sensors = Beamforming



Ultrasound imaging basics

Transmission Channel Data Reconstructed RF scanline

LG R R ‘ Bealr)r:fg:)t::\in o
(~20-50MHz / element) B

—

Hundreds to thousands High-data rates Spatial filtering

000

of channels/firing

’2\0 m
00000000000000000000 _ _ o =
\ i How much signal is reflected from S e
this particular pixel? =
o
o o
Spatial filtering = beamforming e 3
w 0
* Sidelobes & grating lobes § o

*  Mainlobe width (resolution) =

(¢]

The better the spatial selectivity,
The better the tissue contrast and resolution

Image from “Speckle reduction imaging” by Milkowski et al.
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Ultrasound imaging basics

Image quality is a function of:
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1. Physics: array geometry and probe bandwidth
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Increased array aperture — increased angular resolution
\ Angular plot: 4 sensors; Aperture L = 2\ Angular plot: 8 sensors; Aperture L = 4. Angular plot: 16 sensors; Aperture L = 8AAngular plot: 32 sensors; Aperture L = 16
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Better spatial selectivity,

Better tissue contrast and resolution 2. Algorithms: powerful digital signal processing and beamforming on RF channel data
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Ultrasound imaging Al opportunities

Focused transmit

v
,

Parallel ultrafast acquisition

* High time-resolution

 Compromising spatial resolution and contrast

* Relies more heavily on receive spatial filtering/beamforming

High image quality under minimal data rates

* Improve tissue contrast (accurate contrast)

* Resolution depends on array aperture -> high-res with
small/sparse aperture?

 Compressed sensing to reduce data rates at the probe

0000000000000 0000000 ulaperture
00000 Small aperture (compact)

000 0000 0000 00 O O Sparseaperture (less data)




Image basics: MRI

K-space

Inverse
FT

Pulse sequence
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Magnetic Resonance Imaging Phase encoding raden
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(faster, low-field etc.) kepace & filed Repetition time, TR

Total time ~ TRXamount of repetitions/lines
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Image basics: MRI

Undersampled K-space
+k,

Full K-space
p(x|y)? P
Reconstruction Sampling/
algorithm acquisition
How?

Priors
p(x)?

Magnetic Resonance Imaging
(faster, low-field etc.)

= |less acquisitions = faster

EINDHOVEN
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Image reconstruction
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Fast MRI

* Compressed sensing/fewer acquisitions
* Acceleration

e Aliasing artefacts

Low-field MRI
* Lower field strengths: compact MRI machines
* Low SNR k-space -> less clear high-frequencies -> low resolution

Magnetic Resonance Imaging
(faster, low-field etc.)
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Image reconstruction

Low-dose CT
e Safer —less ionizing radiation
* Low SNR -> limited fidelity

Sparse CT

* reduced scan time and improved time resolution
* Lower dose

* Undersampling artefacts

Full Sparse

Computed Tomography
(low-dose, sparse-view)
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Image reconstruction

Magnetic Resonance Imaging Computed Tomography Ultrasound
(faster, low-field etc.) (low-dose, sparse-view) (high-quality, reduced data-rates)




What gaps can we fill by learning?
Challenges in classical image recon based on models
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Acquisition model Statistical image priors Slow image reconstruction with
assumptions incorrect/imprecise not sufficiently high complexity (e.g. iterative,

expressive/accurate matrix inversions etc)




Acquisition model
assumptions incorrect/imprecise
(multiple scattering, aberration

etc.)

Models and Priors: ultrasound

Yy can be:

|
|
High rate ADC

(~20-50MHz / element)

Rl
(1)

Digital
Beamforming

(1) RF channel data (array response)
(2) Beamformed RF data
(3) Image data (beamformed + envelope detected)

(2)

Demod

—)

(3)

TU/e

p(y|x): Likelihood of measurements y given object x

Across our imaging pipeline and set of applications,

Advanced
signal processing
applications
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Models and Priors: ultrasound

Acquisition model
assumptions incorrect/imprecise
(multiple scattering, aberration
etc.)

|
| .
\—L High rate ADC ‘ Digital —)

Beamformi
(~20-50MHz / element) eamiorming

Array response (narrowband) single target:
(t) = a(@)x(t) + n(t
y (6) (t)

Noise vector: = Sensor noise

Array response vector: = Off-axis scattering/interference
(assumed constant SoS, = Reverberation
no aberration) mm) |n practice complex statistics

Typical assumption: n(t)~N (0, g21)
m) NSE-optimal matched filter: £(t) = wy(t) (w=a)

= delay-and-sum (DAS) for wideband
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Models and Priors: ultrasound

| |
High rate ADC - Digital —)

Beamformi
(~20-50MHz / element) eamforming

Array response (narrowband) single target:
(t) = a(@)x(t) + n(t
y (6) (t)

Noise vector: = Sensor noise

Array response vector: = Off-axis scattering/interference
(assumed constant SoS, = Reverberation
no aberration) mm) |n practice complex statistics

Model-based alternatives to DAS:
= MVDR (minimize total (noise) power but retain unity gain)

Acquisition model = iMAP (assume x(t)~ N (0, 02); iteratively estimate o, g,, per pixel)
assumptions incorrect/imprecise = ADMIRE (aperture domain model of signal and
(multiple scattering, aberration noise/interference/clutter; separate using optimization methods)
etc.) Jensen et al.

EINDHOVEN
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Byram et al.



Models and Priors: ultrasound

oo¥0(~€~)o | |
" High rate ADC - Digital —)

Beamformi
(~20-50MHz / element) eamforming

y(t) = a(8)x(¢t) + n(t)

= DAS (matched filter)

= MVDR (minimize total (noise) power but retain unity gain)

= iMAP (assume x(t)~ N (0, 02); iteratively estimate o, g,, per pixel)

= ADMIRE (aperture domain model of signal and
noise/interference/clutter; separate using optimization methods)

Acquisition model
assumptions
incorrect/imprecise
(multiple scattering,

aberration etc.)

Statistical image . .
Ip'rior; General problem: model p(y|x) too simple / incomplete /

not sufficiently or hard to solve due to suboptimal prior p(x)
expresswe/accurate
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Models and Priors: ultrasound
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7 Slow image
Y(t) = a(@)x(t) + n(t) " reconstruction
\

= DAS (matched filter)

= MVDR (minimize total (noise) power but retain unity gain)

= iMAP (assume x(t)~ N (0, 02); iteratively estimate o, g,, per pixel)

= ADMIRE (aperture domain model of signal and
noise/interference/clutter; separate using optimization methods)

Acquisition model
assumptions
incorrect/imprecise
(multiple scattering,

aberration etc.)

Statistical image . .
Ip'rior; General problem: model p(y|x) too simple / incomplete /

not sufficiently or hard to solve due to suboptimal prior p(x)
expresswe/accurate
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Models and Priors: MRI

p(y|x): Likelihood of measurements y given object x
K-space measurement:

y = AFx+n A: Subsampling matrix
F: 2D Fourier transform

For low-field: n is dominating higher frequencies
For fast-MRI: A is sampling below Nyquist (compressed sensing)

Classical reconstruction: x = F~1z (z = zero-filled
Inverse (MAP) problem: k-space y)

X = argmaxy p(y|x)p(x)
- .1 2
X = argmin, E||y — AFx||2 — log p(x)

Statistical image priors
not sufficiently
expressive/accurate

General problem: prior p(x) not sufficiently expressive

EINDHOVEN
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What if we could improve our models using deep
learning without ending up just trowing away
what we do know about the problem?



Model-based deep learning

Deep Learning Model-based algorithms

Domain Ii“‘(\owledge
Sensor physics
Inductive biases
Theoretical guarantees

Complex statistical models
Learns from data

How to bring together to get the best of both?

Van Sloun et al. Proceedings of the IEEE, 2020

Luijten, ..., Van Sloun. IEEE trans. med. im., 2020
Solomon, ... van Sloun, Eldar. IEEE trans. med. im., 2019




One step back: Model-based optimization

General recipe: construct a model-based optimization algorithm based on a-priori

knowledge of the measurement process and statistical priors

Define measurement model with image of interest x :

y=Ax+n
Formulate MAP optimization problem:

= argmaxy p(y|x) p(X)

R
X = argminy —log (p(y|x) p(x))

Likelihood model under Normal distribution:

p(y|x) = ce —%(Y—AX)TE_l (y—Ax)

R = argmin, % (y—Ax)TE " 1(y — Ax) —logp(x)
(assume uncorrelated noise)

- .1 2
L = argminy E|Iy — Ax||2 — log p(x)

@370

]

Iterative model-based algorithm
with input y and output x

Many iterative solvers (for particular choices of p(x))

ISTA, ADMM, etc.



One step back: Model-based optimization

General recipe: construct a model-based optimization algorithm based on a-priori
knowledge of the measurement process and statistical priors

Define measurement model with image of interest x :

y=Ax+n

o .1 2

X = argminy E||y — Ax||2 — log p(x)

3 1 : @— f0)

X = argminy E ||y — Ax| |2 + gg(X) (regularizer go parameterized by 6) |
Iterative proximal gradient solvers: Prior  Proximity function

2 1
z=x"—yu (Vx| ly — Ax| |2) = f1(x*) Iterative model-based algorithm
=X

with input y and output x

X

k+1

1
xT = argminxz ||z — x||2 + g (x) = Prox(z)

2-step factorized optimization



One step back: Model-based optimization

General recipe: construct a model-based optimization algorithm based on a-priori
knowledge of the measurement process and statistical priors

Define measurement model with image of interest x :

y=Ax+n

- .1 2
X = argminy E||y — Ax||2 — log p(x)

1)

C

j Factorize

Prior

f1()

Proximity function

(y)—>»
:

-1

Prox

-

Typical structure

optimization algorithm

Factorized into prior step

and data consistency step

(=data likelihood)



One step back: Model-based optimization

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Sparse coding problem

Some intuition:

y=AXx+n with X being sparse (x~Laplace)

MAP problem for x : | l( ) Il

o . —logp(x) ~ ||x

R = minimize ||Ax — y||5+A]x]|, & 1
X

\
\ l"
A R




One step back: Model-based optimization

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Some intuition:

Sparse coding problem
y=AXx+n with x being sparse
MAP problem for x :

R = minimize ||Ax — y||5+A]x]|,
X

(x~Laplace)

—log

Iterative shrinkage and thresholding (ISTA)

@ Take a gradient step towards mxinlle —vyll3

@ Move intermediate solution towards prior

Solve: min |x — @ ||§+/1||X||1
X

$1(&9)

= soft thresholding function

1

p(x) ~ [Ixlly

x — ulllAx - yll3

/

>
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One step back: Model-based optimization

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Some intuition:

Sparse coding problem

y=AXx+n with X being sparse (x~Laplace)

MAP problem for x : | l( ) Il

o . —logp(x) ~ ||x

R = minimize ||Ax — y||5+A]x]|, & 1
X

Iterative shrinkage and thresholding (ISTA)

Proximity operator
Soft thresholding

min||x — £ || + 2lxIl;

= 5,&D)

Gradient update step w.r.t.
Likelihood term

x — ulllAx - yli3




Model-based DL: Deep unfolding

General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn parameters.

i
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f0)
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“Unfold” K iterations

Iterative model-based algorithm
with input y and output x

Iterative
algorithm

N S |
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L,

unfolded model-based algorithm
with input y and output x

Learned iterative
algorithm



Deep unfolding for sparse coding (LISTA)

General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn parameters.

Learned(L)ISTA

Model-based layer

@ : :““““““'“.:E ...... .
Wl ! W3 | W2F—1
“Unfold” K iterations ; [ o
-»,—i-/ E|I—é_>7+l§_>i .......... (ﬁﬂl- EN..@
T . T l B
A Ao i A ‘: Ak
(y)—{ua" P (xy) o S
3 £ 7 Deep learning with a model-based signal prior
* Learn the weight matrices/convolutions W;
I — uATA * Learn the thresholding parameters A;
* Use the prior (sparsity) and optimization structure

ISTA Note: Network nonlinearity (activation function)
follows directly from the prior!

Gregor & LeCun ICML 2010



Optimization with “plug and play priors”

General recipe: take a model-based optimization algorithm, .... what if we don’t
know the prior, or it is complex to describe/model?

Define measurement model with image of interest x :

y=Ax+n
2 in 1 2 @—> Z
X = argminy E||y — Ax||2 — log p(x) f1() Z&] Prox
1 2 I
X = argminy 5 ||y — Ax| |2 + fg(X)  (regularizer fy parameterized by 0) Xk-1
Iterative proximal gradient methods: Prior Proximity function Typical structure

optimization algorithm

z=x*—p(Rlly-axi))|  =AGEH
=X

X

k+1

1 2
x* = argminy > ||z — X| |2 + fo(X) = Prox(z) Question: what is a good general choice for Prox(z) in

structured signals if you don’t know p(x)?

2-step factorized optimization
A high-performant denoiser

Meinhardt et al. ICCV 2017



Optimization with “plug and play priors”

General recipe: take a model-based optimization algorithm, “plug in” a high-
performant denoiser (e.g. trained deep neural network) as the Prox

Define measurement model with image of interest x :
y=AXx+n

- .1 2
L = argminy 5|Iy — Ax||2 — log p(x)

g

Any properly trained denoiser
“Plugged in”

fQ) Factorize : f1(5) Zk Prox (denoising priors)
Xk

Factorized into prior step
and data consistency step
(=data likelihood)

-1

Typical structure
optimization algorithm

* Properly trained: under a certain Lipschitz condition

Meinhardt et al. ICCV 2017 (Ryu et al., 2019)



Deep unfolding & end-to-end training

General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn proximal parameters.

Define measurement model with image of interest x :
y=AXx+n

A . 1 2
X = argminy - | ly — Ax| |2 — log p(X) Networks can have
independent parameters

“Unfold” K iterations

@O— fi() |Zk] Prox £
Xk

- j @T

Typical structure
optimization algorithm

Mardani et al. NeurlPS, 2018



Deep unfolding & end-to-end training

General recipe: take a model-based optimization algorithm, unfold it as a fixed-
complexity graph, learn all parameters.

Define measurement model with image of interest x :

y=AXx+n

- .1 2
L = argminy 5|Iy — Ax||2 — log p(x)

“Unfold” K iterations

Prox

P f1()
Xk

-1

Typical structure
optimization algorithm

Mardani et al. NeurlPS, 2018

Networks can have
independent parameters

Gradient update matrices Wy, W, also learned




Combining models, priors and deep learning
for image reconstruction: use-cases

Magnetic Resonance Imaging Computed Tomography Ultrasound
(faster, low-field etc.) (low-dose, sparse-view) (high-quality, reduced data-rates)




Combining models, priors and deep learning
for image reconstruction: use-cases

Ultrasound
(high-quality, reduced data-rates)



Transmission

Opportunities for ultrasound

Channel Data

High rate ADC
(~20-50MHz / element)

Hundreds to thousands
of channels/firing

Deep Learning in Ultrasound

Imaging

Deep learning is taking an ever more prominent role in medical imaging. This article
discusses applications of this powerful approach in ultrasound imaging systems along
with domain-specific opportunities and challenges.

By Ruup 1. G. vAN SLOUN", Member IEEE, REGEV COHEN, Graduate Student Member IEEE,

AND YONINA C. ELDAR™, Fellow [EEE

ABSTRACT | In this article, we consider deep leaming strate-
gies in ultrasound systems, from the front end to advanced
applications. Our goal is to provide the reader with a broad
understanding of the possible impact of deep leaming method-
ologies on many aspects of ultrasound imaging. In particular,
we discuss methods that lie at the interface of signal acquisi-
tion and machine learning, explaiting both data structure (e.g.,

cmamdb A mamn damaind and daba dleanciasalig (kin datal

staging, and management, as well as for rearment choice,
planning, guidance, and follow-up. Among the diagnos-
tic imaging options, ultrasound imaging [1] is uniquely
positioned, being a highly cost-effective modality that
offers the clinician an unmarched and invaluable level
of interaction, enabled by its real-time nature. Its porta-
bility and cost effectiveness permit point-of-care imaging

PR S B L PSP R FR R ) S R, T e

—

High-data rates

Digital
Beamforming

Spatial filtering

Advanced
signal processing
applications

Ultrasound localization microscopy
Shear wave imaging
Doppler/strain
Contrast agents

—

Al opportunities across the entire imaging chain

Van Sloun, Cohen, Eldar, Proceedings of the IEEE, 2019
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Jensen et al.

Adaptive beamforming by MVDR

Geometry-based time-space migraton + model-based adaptive apodization
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aflR~1a
Slow (O(N3)), instable matrix inversions,

relies on accurate estimates of statistics (model knowledge)




Luijten et al., IEEE ICASSP, 2019 Luijten et al., IEEE trans. Med. Imag., 2020

Adaptive beamforming by deep learning (ABLE)

Hybrid inference: Model-based computational graph with integrated NN

o Ll
et

Geometry-based
time-space migration

D &
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Fast & stable,
learns actionable statistics & function from data
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Adaptive beamforming by deep learning (ABLE)

Delay-and-sum (standard) Deep learning (ABLE) Target (MVDR)

Wi i - i EINDHOVEN T N
Note: without post-processing and s-curve p H I LI p TU e EINDHOVEN. {Qf;{{%% y‘v_ij TZJB ) n.jﬁ
60 dB, log-scale TECHNOLOGY | (S8 WEZMANN INSTITUTE OF SCIENCE



Adaptive beamforming by deep learning (ABLE)

.
’ Less clutter

Higher resolution

High processing rates,
and robustness

Standard Deep learning (ABLE)

Note: without post-processing and s-curve p H I LI ps TU/ glrl:llt\)l:g;il:lm ﬁydﬁ D‘[Db TEB)] njz:l
-
60 dB, log-scale e TECHNOLOGY  P'{ Sl WHZMANN INSTITUTE OF SCIENCE




Chennakeshava et al., IEEE IUS, 2020

High-resolution plane-wave compounding

! Unobserved
ngh res object

r---------

[Y1' Y2, 3
Acquisition model Solve inverse problem:
Deep unfolding with end-to-end training




Chennakeshava et al., IEEE IUS, 2020

High-resolution plane-wave compounding

"""""""" = . Networks have
Measured input Acquisition independent parameters

1
! Unobserved
| High-res object

r--------- -

Gradient update matrices Wy, W, also learned

Acquisition model




Chennakeshava et al., IEEE IUS, 2020

High-resolution plane-wave compounding

Input images DL output Target




Solomon et al. IEEE trans. Med. Imag., 2019
van Sloun et al. Proceedings of the IEEE, 2020

Spatiotemporal source-extraction/dehazing

E Independent
signals

Measured
mixed input

|

[ NS —

Acquisition model Solve inverse problem:
Deep unfolding with end-to-end training



Solomon et al. IEEE trans. Med. Imag., 2019
van Sloun et al. Proceedings of the IEEE, 2020

Spatiotemporal source-extraction/dehazing

.. . .1
Model-based layers Optimization problem: min S|[D —L - S|[% + Aal|L] |« + X2[[S]]1,2

= ] EF o=y
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1
k+1 1k __Qk
Prox-grad solution: L =0V (21’ S D)

= (iterative) SHL =T, (lsk _LF 4 D)
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Solomon et al. IEEE trans. Med. Imag., 2019
van Sloun et al. Proceedings of the IEEE, 2020

Spatiotemporal source-extraction/dehazing

Model-based layers

Optimization problem: xin 5 —||D L — S||7 + A[L[]+ + Az

1,
5L‘~—S’“+D)

k+1 _
Prox-grad solution: L =8V (

]:- o o
(iterative) ST (%Sk Y +D)

ISTA for RPCA Deep convolutlonal Robust PCA
A1
L
>l > Tissue Ly 1— Tissue
Input ol
frames ™
W i A e .
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Standard contrast-ultrasound

UNIVERSITY of
WASHINGTON



Super-resolution contrast ultrsound by LISTA

Van Sloun et al., Proceedings of the IEEE, 2020
Van Sloun et al., IEEE trans. Med. Imag., 2020
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Combining models, priors and deep learning
for image reconstruction: use-cases

Magnetic Resonance Imaging
(faster, low-field etc.)



Van Gorp et al., in review Huijben et al., ICASSP 2020 Huijben et al., ICLR 2020

MRI: learning acquisition

Measurement Reconstruction
Model-based mm

TU/e sy t+ 1




Van Gorp et al., in review Huijben et al., ICASSP 2020 Huijben et al., ICLR 2020

MRI: learning acquisition
Measurement Reconstruction
Importance of model-based DL for recon: -
* Factorizes knowledge
 Sampling and recon update directions
‘decoupled’ during learning

R
ER 7

Acquisition/sampling changes directly update f() t + 1




Huijben et al., ICASSP 2020

Full k-space

Full sampling

Sampling

Learned mask

Low frequencies

Learned sampling

Huijben et al., ICLR 2020

MRI: learning sampling density mask

ﬁrget

MR image

—l

PSNR: 35.8

—l

PSNR: 36.2




Van Gorp et al., in review

MRI: learning active acquisition

Active line sampling
K-space (cumulative) Reconstruction

sampling actions

Factor 8 undersampling

Target (full acquisition)

Method NMSE PSNR [dB] SSIM
Zhang et al., 2019 (active) 0.0398 28.8 0.610
Pineda et al., 2020 (active) 0.0371 29.2 0.623
Fixed learned sampling (ours) 0.0360 30.1 0.650
Active acquisition (ours) 0.0342 30.2 0.654




p(ylx) *

Acquisition model
assumptions
incorrect/imprecise

Statistical image priors
not sufficiently
expressive/accurate

Geometry-based
time-space migration
L

Conclusions

fQ)

Reconstruction
Model-based :

Measurement

Slow reconstruction
with high complexity

Model-based algorithms

Domai{kgowledge
Sensor physics Networks have

. uctive st__es independent parameters

2 / .
g Theoretical guarantees
& ?

o 7
e n 0 e -
e e

© L

Deep Learning

§ " ]
Complex statistical models
Learns from dat_a_-.(jf«;

Gradient update matrices Wy, W, also learned




Thanks!




