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  A short historical background

Machine Learning

Deep Learning

Artificial Intelligence

Inspired (and simplified) from the 

(I. Goodfellow and Y. Bengio, A. Courville, 2016)

deeplearningbook.org
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  A short historical background

Machine Learning

Deep Learning

Artificial Intelligence

Inspired from Sebastian Raschka's  deep-learning course
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https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L01-intro/L01-intro_slides.pdf


  A short historical background

Artificial Intelligence

Inspired from (Cardon D., Cointet J.-P., Mazieres A., 2018)
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  A short historical background

Artificial Intelligence

Inspired from (Cardon D., Cointet J.-P., Mazieres A., 2018)

DEDUCTIVE
 

rule-based
no need of examples

INDUCTIVE
 

example based
adaptation

Symbolic AI connectionism
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  A short historical background

Cybernetics (40’s to 60’s)

Inspired from (Cardon D., Cointet J.-P., Mazieres A., 2018)

Symbolic AI connexionism

Perceptron (Rosenblatt) ADALINE (Widrow & Hoff)

(W. Ross Ashby)

Homeostat, 1948

source wikipedia
source reddit

https://isl.stanford.edu/~widrow/
papers/t1960anadaptive.pdf
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https://www.cairn-int.info/article-E_RES_211_0173--neurons-spike-back.htm#
http://www.rossashby.info/journal/page/2435.html
https://en.wikipedia.org/wiki/Homeostat#/media/File:W._Ross_Ashby's_1948_Homeostat.jpg
https://www.reddit.com/r/EngineeringPorn/comments/e8a7x8/frank_rosenblatt_with_a_mark_i_perceptron/
https://www.reddit.com/r/EngineeringPorn/comments/e8a7x8/frank_rosenblatt_with_a_mark_i_perceptron/


  A short historical background

Symbolic Artificial Intelligence (60’s to 80’s)

Inspired from (Cardon D., Cointet J.-P., Mazieres A., 2018)

Symbolic AI connexionism

MYCIN (Shortliffe):  medical diagnoses (bacteria identification)

 GUIDON (Clancey):  teaching medical diagnostic strategy

CADUCEUS (Pople): internal medicine expert system

 (Myers)
Transcript of an INTERNIST-I

Consultation
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https://www.cairn-int.info/article-E_RES_211_0173--neurons-spike-back.htm#
http://medg.lcs.mit.edu/ftp/psz/AIM82/ch5_transcript.html


  A short historical background

Inspired from (Cardon D., Cointet J.-P., Mazieres A., 2018)

publication trends timeline

negative feedback logic-based rules backprop

McCulloch, Pitts, Hebb

Samuel, Ashby, Rosenblatt McCarthy, Minsky, Papert, Simon,

Newell

Hinton, LeCun,

Breiman, Rumelhart
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  A short historical background

Inspired from (Cardon D., Cointet J.-P., Mazieres A., 2018)

ideas trends timeline

negative feedback logic-based rules backprop CIFAR-NCAP
Datasets++
GPU++

"Deepstributed"

Perceptron (Rosenblatt) SVM (Cortes, Vapnik)ADALINE (Widrow & Hoff)

Homoestat (Ashby)

MYCIN (Shortliffe)
 GUIDON (Clancey)

INTERNIST (Myers)

Perceptrons
(Minsky, 1969)

10

backpropagation
(Rumelhart, )

Deep Belief Nets 

(Hinton)

Macy conferences
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Machine Learning

“  A computer program is said to learn [...] if

  A short historical background
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Machine Learning
“ Machine learning is the field of study that

gives computers the ability to learn
without being explicitly programmed.

Arthur L. Samuel, AI pionneer, 1959

  A short historical background
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“  A computer program is said to learn [...] if
its performance at tasks in T, as measured

by a performance indicator P, improves with
experience E.

Tom Mitchel, 1978 (tweaked citation)

  A short historical background
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Task

Experiment 

Performance
Learn

  A short historical background

Images from PhD student
Ludmilla Penarrubia
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  A short historical background

supervised
learning

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images.
Data in Brief. 2020 Feb;28:104863. DOI: 10.1016/j.dib.2019.104863.
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  A short historical background

supervised
learning

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images.
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  A short historical background

supervised
learning

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images.
Data in Brief. 2020 Feb;28:104863. DOI: 10.1016/j.dib.2019.104863.
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  A short historical background

supervised
learning

unsupervised
learning

detection (lesions)
classification (benign/malign)
segmentation (organs)
prediction (prognostic)
...
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detection (lesions)
classification (benign/malign)
segmentation (organs)
prediction (prognostic)
...

clustering
dimension reduction
representation
density estimation
...

  A short historical background

supervised
learning

unsupervised
learning

Image from PhD student
Yamil Vindas
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  A short historical background

supervised
learning

unsupervised
learning

reinforcement
learning

self-supervised
learning

Transfert
learning

Domain
Adaptation
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supervised
learning

unsupervised
learning

Weakly-
supervised

semi-
supervised
learning

  A short historical background

reinforcement
learning

self-supervised
learning

Transfert
learning
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Domain
Adaptation



supervised
learning

 supervised learning
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Supervised Learning



Supervised machine learning

A. Introduction

B. Choice of machine learning algorithm

C. Machine learning pipeline

1. Training
2. Evaluation
3. Model selection

D. Special considerations in medical applications
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Introduction

Feature
extraction

Images
2d, 2d+t, 3d, 
multi-modal...

Machine learning
algorithm

Detection, segmentation
prediction...

Decision
Prognosis, diagnosis...
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Introduction

Feature
extraction

Images
2d, 2d+t, 3d, 
multi-modal...

Machine learning
algorithm

Detection, segmentation
prediction...

Decision
Prognosis, diagnosis...

Gray-level (mean, variance...)
Texture 
Geometric (shape, curvature...)
Vector/ Tensor fields (flow, strain...)
Clinical measurements
...
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Supervised machine learning pipeline

Feature
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Machine 
learning

algorithm
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What is supervised learning ?

Let f ∗ : X 7→ Y be an unknown function such as ∀x ∈ X and ∀y ∈ Y :

y = f ∗(x)

feature
vector

 label
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What is supervised learning ?

Let f ∗ : X 7→ Y be an unknown function such as ∀x ∈ X and ∀y ∈ Y :

y = f ∗(x)

� Definition

Supervised learning is the task of learning a function hL ∈ H
(hL : X 7→ Y ), called a hypothesis that best approximates f ∗ based
on a dataset D of N input/output pairs (D = {xi , yi}16i6N)

H
� H is called the hypothesis

space

� hl may also be called a
predictor or a model

5 / 52



How to learn from data ?

� Choose the type of algorithm (i.e. the hypothesis space H)

� Train a model (i.e. find the best hl ∈ H)
I What is a good model ?

� Evaluate the model
I Evaluation metrics

H1

H3

H2
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Supervised machine learning

A. Introduction

B. Choice of machine learning algorithm

C. Machine learning pipeline

1. Training
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Classification vs Regression

Task: Learn h : X 7→ Y based on a dataset D = {xi , yi}16i6N

Two different tasks depending on the type of label yi :

� Classification: yi ∈ N
Example: Does the image contain a malignant melanoma ?

0 or 1
 (no) (yes) 

� Regression: yi ∈ R
Example: FFR (Fractional Flow Reserve) prediction from a coronary
angiography.

[0, 1] 
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Various types of models

Choose a type of model (i.e. the hypothesis space H):

� Linear models

I Naive Bayes

I Logistic regression

I Perceptron

I Linear Discriminant Analysis (LDA)

� Support Vector Machine (SVM)

� K Nearest Neighbors

� Decision Tree

� Neural networks

9 / 52



How to make the choice ?

� There is no “best” algorithm that will work on any dataset
−→ ”No free lunch” theorems [1]

The choice of a “good” machine learning algorithm depends on:

� The complexity of the unknown targeted function f ∗

� The amount of labeled data

� The dimension of the input space X

� The amount of noise (stochastic or deterministic) in the data and
labels

� ...

[1] Wolpert, D. H., ”The lack of a priori distinctions between learning algorithms”, Neural

computation, 1996
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Supervised machine learning

A. Introduction

B. Choice of machine learning algorithm

C. Machine learning pipeline

1. Training
2. Evaluation
3. Model selection

D. Special considerations in medical applications
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Parameters vs hyperparameters

Once H is chosen, learning a model h consists in finding the best h ∈ H
given a dataset. A model h is defined by:

� A set of parameters Θ1

The parameters of a model are learnt from the data.

Examples:
I The weight values in neural networks
I The support vectors in SVM
I The split values in decision trees

� A set of hyperparameters Θ2

The hyperparameters cannot be learnt from the data. They have to
be set before training the model.

Examples:
I The number of trees in a random forest
I The learning rate in neural networks
I The number of neighbors ”k” in KNN
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Machine Learning pipeline

Set hyperparameters

Performance of model

*

Learn parameters

Model evaluation

*
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Loss function

The loss function L (L : Y × Y 7→ R+) associates a cost to the
prediction ỹi = h(xi ) of a model h compared to its true label yi = f ∗(xi ).

Examples:

� Binary loss for classification

L(yi , ỹi ) =

{
1 if yi 6= ỹi
0 otherwise

� Quadratic loss for regression

L(yi , ỹi ) = (yi − ỹi )
2
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0 otherwise

� Quadratic loss for regression
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Real risk and model error

� Real Risk
Let assume that {xi , yi}16i6N is drawn from a joint probability
distribution P(x , y) over X and Y.

The Real risk R(h) of a hypothesis h is:

R(h) = E[L(h(x), y)] =

∫
X×Y

L(h(x), y) dP(x , y)

� Model error
I f ∗: the unknown function we want to learn
I hl : the model we learn from dataset D

The model error is defined as:

Error = R(hl)− R(f ∗)

Remark: We usually assume that R(f ∗) = 0 (deterministic model)
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Error decomposition

I f ∗: the unknown function we want to learn
I h∗: the optimal model in H
I hl : the model we learn from dataset D

R(hl)− R(f ∗)︸ ︷︷ ︸
Error

= R(hl)− R(h∗) + R(h∗)− R(f ∗)

H
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Error decomposition

I f ∗: the unknown function we want to learn
I h∗: the optimal model in H
I hl : the model we learn from dataset D

R(hl)− R(f ∗)︸ ︷︷ ︸
Error

= R(hl)− R(h∗)︸ ︷︷ ︸
Variance

+R(h∗)− R(f ∗)︸ ︷︷ ︸
Bias

H
Error

Bias

Variance
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Bias / Variance trade off

Model 
complexity

Error

Total

error

Bias
Variance
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Bias / Variance trade off

Model 
complexity

Error

Total

error

Bias
Variance

Optimal
Model

Underfitting Overfitting

Underfitting OverfittingOptimal Model
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Real risk vs. Empirical risk

Learning a model is finding its best set of parameters Θ1, which is done
by minimizing the model error (= Real Risk)

� Real Risk

R(h) =

∫
X×Y

L(h(x), y) dP(x , y)

−→ In practice P(x , y) is not known.

� Empirical Risk
Approximation of the real risk over a dataset D = {xi , yi}16i6N

Remp(h) =
1

|N|
∑

x,y∈D
L(h(x), y)
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Empirical Risk Minimization

� In theory, learning a model is minimizing the error R(hl)

� In practice, we cannot compute R(hl) so we minimize Remp(hl)

−→This is called Empirical Risk Minimization

� Empirical Risk Minimization (ERM)

hl = arg min
h∈H

1

|N|
∑

x,y∈D
L(h(x), y)

where D = {xi , yi}16i6N is the training dataset
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Supervised machine learning

A. Introduction

B. Choice of machine learning algorithm

C. Machine learning pipeline

1. Training
2. Evaluation
3. Model selection

D. Special considerations in medical applications

22 / 52



Machine Learning pipeline

Set hyperparameters

Performance of model

*

Learn parameters

Model evaluation

*
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Model evaluation

A good model is a model exhibiting:

� High performance

� A good generalization power when seeing new data

� Stable performance for small dataset variations

To select a good model, we need to validate its performance according to
these 3 criteria

−→ Choose a validation strategy

24 / 52



Validation strategies

Several validation strategies were developed:

� Hold out

� K-fold cross validation

� Leave-one-out cross validation

� Bootstrapping

−→ They all require to split the dataset
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Dataset splitting

Dataset
samples

Set hyperparameters

Performance of model

*

Learn parameters

Model evaluation

*
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Dataset splitting

Dataset

Test
set

Training
set

samples

Set hyperparameters

Performance of model

*

Learn parameters
on the training set

Model evaluation
on the test set

*
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K-fold cross validation for model evaluation

Goal: Evaluation of the model mean performance, generalization and
stability.

� Split the dataset in k folds

Fold 1 Fold 2 Fold 3

� Generate the k combinations of 1 test fold and the remaining k − 1
training folds

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Training Test

Split 1

Split 2

Split 3
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K-fold cross validation for model evaluation

Objective: Evaluation of the model mean performance, generalization
and stability.

� Split the dataset in k folds

Fold 1 Fold 2 Fold 3

� Generate the k combinations of 1 test fold and the remaining k − 1
training folds

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Training Test

Split 1

Split 2

Split 3
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K-fold cross validation for model evaluation

� For each split, use the training folds to learn a model hΘi
1,Θ2

and
evaluate the model on the remaining test fold.

Fold 1 Fold 2 Fold 3

Split 1

Training

Split 2

Training

Fold 1 Fold 2 Fold 3

Split 3

Training

Fold 1 Fold 2 Fold 3

� Compute the mean and standard deviation of the performance of the
model.
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What is the performance of a model ?

� The performance of a model is assessed based on one or several
metrics

Examples of classic metrics:

� Regression metrics
I Mean Square Error (MSE)
I Root Mean Square Error (RMSE)
I Peak Signal-to-Noise Ratio (PSNR)
I Structural Similarity (SSIM)

� Classification metrics
I Accuracy
I Dice / F1
I Intersection over union (IoU)
I Sensitivity
I Specificity
I Precision


Based on the Confusion Matrix
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Confusion Matrix

Estimated class
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� FP: false positive

� TN: true negative

� TP: true positive

� FN: false negative

� Example for segmentation:

Ground truth

TP

Segmentation

FPFN

TN Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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Choice of metric

� The metrics should be chosen depending on the application.
−→ For the same task, the notion of performance may be very
different depending on the application.

Example: Detection of a rare disease.

� Test used to select people that should be immediately hospitalized
or may die
−→ Missing a case is very bad (false negative)
−→ We want a test with a high sensitivity

� Test used to select people that will receive a very effective treatment.
However giving the treatment to someone who is not sick is deadly.
−→ Detecting a person that is not sick is very bad (false positive)
−→ We want a test with a high specificity
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Supervised machine learning

A. Introduction

B. Choice of machine learning algorithm

C. Machine learning pipeline

1. Training
2. Evaluation
3. Model selection

D. Special considerations in medical applications
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How to choose the model hyperparameters ?

Set hyperparameters

Performance of model

*

Learn parameters
on the training set

Model evaluation
on the test set

*

Dataset

Test
set

Training
set

samples

−→ Model selection
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Model selection

Set hyperparameters

Performance of model

*

* *

Model selection
Learn parameters
on the training set

Model evaluation
on the test set

* *

Dataset

Test
set

Training
set

samples
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Model selection

Set hyperparameters

Performance of model

*

* *

Model selection
on the validation set

Learn parameters
on the training set

Model evaluation
on the test set

* *

Dataset

Test
set

Training
set

samples

Validation
set
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k-fold cross validation for model selection

Objective: Selection of the best set of hyperparameters Θ∗2 .

� Split the dataset in two: a training and a test set.
Keep the test set aside and split the training set in k folds

Training
set

Test
set

Fold 1 Fold 2 Fold 3

� Generate the k combinations of 1 validation fold and the remaining
k − 1 training folds from the training set

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Training Validation

Split 1

Split 2

Split 3
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k-fold cross validation for model selection

� For each set of hyperparameters Θj
2, perform a k-fold cross

validation evaluation.
Compute the mean performance of the model for fixed Θj

2.

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Train Validate
P1

Train

Train

Validate

Validate

P2

P3

� Choose the set of hyperparameters Θ∗2 providing the best mean
performance and train a new model on the full training set.

� Evaluate the performance of this model on the test set.

Training
set

Train
*

*

Test
set

Evaluate
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Problems with k-fold cross validation for model selection

� The choice of the best model is done based on the average
performance on training set and not on an independent dataset.

−→ Introduction of a model selection bias

� The performance of the selected model is evaluated on a single test
set

−→ No estimation of the variance due to the test set choice.

−→ Use nested k-fold cross validation

41 / 52



Nested k-fold cross validation

� Split the dataset in k-folds and generate the classic k combinations.

Fold 1 Fold 2 Fold 3Split 1 Fold 4

Fold 1 Fold 2 Fold 3Split 2 Fold 4

Fold 1 Fold 2 Fold 3Split 3 Fold 4

Fold 1 Fold 2 Fold 3 Fold 4Split 4

outer cross 
validation loop

Training Test

� For each split, perform a k-fold cross validation on the training folds
to select the best model.

Split i

Test
foldTraining folds

sub
fold 1

sub
fold 2

sub
fold 3

Sub split 1

sub
fold 1

sub
fold 2

sub
fold 3

Sub split 2

sub
fold 1

sub
fold 2

sub
fold 3

Sub split 3

inner cross 
validation loop
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Nested k-fold cross validation

� For each split j , test the best inner loop model on the test fold

� Compute the mean and standard deviation of the performance of the
models
−→ Provides an estimate of the generalization and stability of the
learnt models

Fold 1 Fold 2 Fold 3Split 1 Fold 4

Fold 1 Fold 2 Fold 3Split 2 Fold 4

Fold 1 Fold 2 Fold 3Split 3 Fold 4

Fold 1 Fold 2 Fold 3 Fold 4Split 4

Training Test

Test
P1

Test

Test

P2

P3

Models selected by
the inner loop

Test
P4
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Nested k-fold cross validation

Remarks:

� The inner loop does the model selection and the outer loop does the
evaluation of the selected model

� The model selection is included in the learning where the
hyperparameters are learnt from the data.

� Two common strategies to obtain the final model:
I Run the inner loop one more time on the complete dataset and

choose the hyperparameters yielding the best mean performance

I Use the k models selected by the inner loops to do ensembling.
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How to learn a “good” model

� Keep in mind the bias/variance tradeoff when learning a model.

I How to reduce the bias (avoid underfitting)
• Increase the complexity of your model
• Add more features

I How to reduce the variance (avoid overfitting)
• Use a validation strategy
• Reduce the complexity of the model
• Add more training data
• Reduce the number of features (dimensionality reduction)
• Use regularization
• Perform ensembling

� Carefully chose your metrics and evaluation strategy
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Supervised machine learning

A. Introduction

B. Choice of machine learning algorithm

C. Machine learning pipeline

1. Training
2. Evaluation
3. Model selection

D. Special considerations in medical applications
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Imbalanced classification

� In medical applications the datasets are often imbalanced (number
of healthy cases � number of pathological cases)

� Specific strategies should be used:
I Resampling methods

over sampling of the rare class, downsampling of the majority class,
data augmentation...

I Cost-sensitive training
Add weight in the loss to penalize misclassifications of the rare class
more.

I Adapt the metrics
Dice or MCC over Accuracy, Precision/Recal over
Sensitivity/Specificity...
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Annotation scarcity and weak supervision

� Annotations are very expensive in medical applications.
−→ Weak annotations, semi-supervision

Tajbakhsh et al., ”Embracing imperfect datasets: A review of deep learning solutions for medical

image segmentation”, MedIA, 2020

Karimi et al., ”Deep learning with noisy labels: Exploring techniques and remedies in medical

image analysis”, MedIA, 2020
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Classical supervised machine learning pipeline
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Supervised deep learning pipeline
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Unsupervised Learning



 from supervised learning ...

1



 to unsupervised learning

2



supervised
learning

 unsupervised learning

D = {x , y }i i 1≤i≤N

3
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D = {x }i 1≤i≤N
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learning

 unsupervised learning

D = {x }i 1≤i≤N

5

https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s


 unsupervised learning
with unsupervised learning you can find

... efficient representations (embedding, interpret)
... estimations of your data distribution (generate new samples)

 
... groups of similar samples (free labels, fill blanks)

... outliers (anomaly detection, de-noising)
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 unsupervised learning

Dimension reduction
Clustering

How to ?

7



 unsupervised learning

Dimension reduction
Clustering

How to ?

7



 unsupervised learning

Dimension reduction
Clustering

How to ?

7



 unsupervised learning

Dimension reduction
Clustering

How to ?

7



 unsupervised learning

Dimension reduction
Clustering

How to ?

7



 unsupervised learning

Dimension reduction

"the curse of dimensionality"

To avoid redundancy and unnecessary computational load

To visualize the data

To improve data representation
(supervised task pre-processing: semi-supervised learning)

8



 unsupervised learning

Dimension reduction

Feature selection
 

Feature extraction

9



 unsupervised learning

Feature selection

feat1 feat2 feat3 feat4 feat5

x1 1 2 2 6 3

x2 2 4 4 12 7

x3 3 6 8 24 9

...

xn 4 8 16 48 11

D = {x }i 1≤i≤N
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 unsupervised learning
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feat1 feat2 feat3 feat4 feat5

x1 1 2 2 6 3

x2 2 4 4 12 7

x3 3 6 8 24 9

...

xn 4 8 16 48 11

D = {x }i 1≤i≤N

D

M

N
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 unsupervised learning

feat1 feat2 feat3 feat4 feat5

x1 1 2 2 6 3

x2 2 4 4 12 7

x3 3 6 8 24 9

...

xn 4 8 16 48 11

×2 ×3

Feature selection

12



 unsupervised learning

feat1 feat3 feat5

x1 1 2 3

x2 2 4 7

x3 3 8 9

...

xn 4 16 11

Feature selection

13



 unsupervised learning
Feature selection example with the Breast Cancer dataset

(K. P. Bennett and O. L. Mangasarian, 1994)

malignant breast fine
needle aspirates

D

M = 10 (only 3 here)

N = 569

14

https://www.aaai.org/Papers/Symposia/Spring/1994/SS-94-01/SS94-01-019.pdf


 unsupervised learning
Feature selection example with the Breast Cancer dataset
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 unsupervised learning
Feature selection example with the Breast Cancer dataset
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 unsupervised learning

e.g. Principal Component Analysis (PCA)

Feature extraction

17



 unsupervised learning

e.g. Principal Component Analysis (PCA)
Feature extraction

linearly combine features to find mutually orthogonal components
 

the (principal) components are ranked from
the most "significant" to least "significant"

projecting the data on the first components maximize its
spread (variance)

 
dimension reduction: select the d first components

18



 unsupervised learning

demo with PCA
Feature extraction

19

https://s3.amazonaws.com/media-p.slid.es/videos/1666873/zQjwBIec/2021-04-04_23-43-11.mp4


 unsupervised learning

demo with PCA
Feature extraction

https://github.com/emmanuelrouxfr/PCA_illustration

20

https://github.com/emmanuelrouxfr/PCA_illustration


 unsupervised learning

PCA

M =  7 here

V diag(λ)

D = V diag(λ)V −1D

Feature extraction

v1 v2 v3 v4 v5 v6 v7

21

λ1
λ2
λ3

λ4
λ5
λ6
λ7

V =−1 V T

v1
v2
v3
v4
v5
v6
v7



 unsupervised learning

PCA
Feature extraction

v1
v2
v3
v4
v5
v6
v7

V =−1 V T

x =projected V x−1

xprojected

x

d = 7

22

M = 7



 unsupervised learning

PCA
Feature extraction

v1
v2
v3
v4
v5
v6
v7

V =−1 V T

x =projected V x−1

xprojected

x

d = 3

23

M = 7M = 7



 unsupervised learning

1st dimension of PCA

selection of the "mean texture" feature (normalized)

∼ 6

∼ 20
24



 unsupervised learning
Dimension reduction (linear)

ICA

PCA ICA

25



 unsupervised learning

ISOMAP
Locally Linear Embedding

Hessian Eigenmapping
Local Tangent Space Alignment

t-distributed Stochastic Neighbor Embedding (t-SNE)
UMAP

(deep) auto-encoders...

non-linear
dimension reduction

26



 unsupervised learning
Dimension reduction (non-linear)

0.9

N

i

N

j

similarity matrix in input space

t-distributed Stochastic Neighbor Embedding (t-SNE)
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 unsupervised learning
Dimension reduction (non-linear)

0.2

N

i

N

j

similarity matrix in input space

t-distributed Stochastic Neighbor Embedding (t-SNE)
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 unsupervised learning
Dimension reduction (non-linear)

0.9

0.2

N

N

0.8

0.3

N

N

similarity matrix in input space similarity matrix in lower space

t-distributed Stochastic Neighbor Embedding (t-SNE)
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 unsupervised learning
Dimension reduction (non-linear)

N

N

N

N

similarity matrix in input space similarity matrix in lower space
L J Frasinski 

t-distributed Stochastic Neighbor Embedding (t-SNE)

30



 unsupervised learning

(Vindas et al. 2021, IEEE IUS 2021 submitted)

example of t-SNE application

accelerating the annotation of a
Transcranial Doppler ultrasound micro-embolic dataset

31



 unsupervised learning

clustering
Find groups of similar examples (clusters)

32

https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods


 unsupervised learning

clustering

what is a cluster ?

33



 unsupervised learning

clustering

34

d

what is a cluster ?
distance-based definition



 unsupervised learning

clustering

35

what is a cluster ?
distance-based definition
density-based definition

ρbρ >a



 unsupervised learning

clustering

36

what is a cluster ?
distance-based definition
density-based definition
distribution-based definition



distance-based definition
density-based definition
distribution-based definition
path-based distribution (graphs)

 unsupervised learning

clustering

what is a cluster ?
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K-means (distance-based method)

 unsupervised learning

clustering

38



 unsupervised learning

clustering

39

1. initialize k samples as centers *

K-means (distance-based method)



 unsupervised learning

clustering

40

1. initialize k samples as centers
2. for each sample associate the label of its closest

center

K-means (distance-based method)



 unsupervised learning

clustering

41

1. initialize k samples as centers *
2. for each sample associate the label of its closest

center
3. update the centers (mean position of its group)

K-means (distance-based method)



 unsupervised learning

clustering

1. initialize k samples as centers *
2. for each sample associate the label of its closest

center 
3. update the centers (mean position of its group)
4. repeat steps 2. and 3. until no update in the clusters
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K-means (distance-based method)
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clustering

1. initialize k samples as centers *
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K-means (distance-based method)
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 unsupervised learning

clustering

1. initialize k samples as centers *
2. for each sample associate the label of its closest

center 
3. update the centers (mean position of its group)
4. repeat steps 2. and 3. until no update in the clusters
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K-means (distance-based method)



 unsupervised learning

clustering

1. initialize k samples as centers *
2. for each sample associate the label of its closest

center 
3. update the centers (mean position of its group)
4. repeat steps 2. and 3. until no update in the clusters
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K-means (distance-based method)



 unsupervised learning

clustering

1. initialize k samples as centers *
2. for each sample associate the label of its closest

center
3. update the centers (mean position of its group)
4. repeat steps 2. and 3. until no update in the clusters
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K-means (distance-based method)



 unsupervised learning

clustering

+ fast (O(n))

- need to know / find k (number of clusters)
- can detect only circular clusters

 
 

alt. k-median (more computation because need to sort...)

K-means (distance-based method)

48



 unsupervised learning

clustering
hierarchical clustering (distance-based method)

agglomerative (bottom up) or divisive (top-down)
 

use of an appropriate metric d (between samples a and b)
 

and
 

a linkage criterion (dissimilarity between sets)
example: single-linkage clustering

min{d(a, b) : a ∈ A, b ∈ B}

49



 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering

hierarchical clustering (distance-based method)

63



 unsupervised learning

clustering

hierarchical clustering (distance-based method)
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 unsupervised learning

clustering
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 unsupervised learning

clustering
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 unsupervised learning

clustering

67



 unsupervised learning

clustering

hierarchical clustering (distance-based method)

+ does not need to know the number of clusters before.
+ does not depend on the chosen distance metric
(source?)
+ sub-groups discovery

- lower efficiency, O(n^3)

68



 unsupervised learning

69

Gaussian Mixture Model with Expected-Maximization
(distribution-based method)

k-means with probability of assignment
(instead of closest point assignment)



 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)

initialize the k = 2 distribution (*several strategies)

70



 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)

Expectation (E) step
find the probability for each point to be generated by each mixture

71

p(X∣θ )(t)



 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)
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Expectation (E) step
find the probability for each point to be generated by each mixture

E [log p(X∣θ )]Z∣X,θ(t)
(t)

= Q(θ∣θ )(t)



 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)
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maximization (M) step:
fit the mixture to the samples

θ =(t+1) argmaxQ(θ∣θ )(t)



 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)
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ready for a new E step ?
check the colors in the squares...



 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)
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 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)
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 unsupervised learning
Gaussian Mixture Model with Expected-Maximization

(distribution-based method)

no more move ? assign the labels => clusters
or keep the multiple labels ...
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 unsupervised learning

clustering

Gaussian Mixture Model with Expected-Maximization
(distribution-based method)

+ not restricted to circular clusters... possibly ellipses !
+ support mixed membership labeling
+ you can generate new samples (probabilistic model)
 
- need to fix the number of Gaussians (expected number
of clusters) as in k-means
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DBSCAN  (density-based method)

All points within the cluster are mutually density-connected
 
If a point is "density-reachable" from some point of the
cluster, it is also part of the cluster
 
    : neighborhood radius
minPts: minimum number of neighbors to be a core point

 unsupervised learning

clustering

ϵ
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ϵϵ

 unsupervised learning
DBSCAN  (density-based method)
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minPts = 2

core point

neighborhood radius

theses are not core points

ϵ



 unsupervised learning
DBSCAN  (density-based method)
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minPts = 2

not core points but
reachable!



 unsupervised learning
DBSCAN  (density-based method)

minPts = 2
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the rest is "noise"



 unsupervised learning
DBSCAN  (density-based method)

minPts = 2
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different results with smaller epsilon ...  



 unsupervised learning
DBSCAN  (density-based method)

minPts = 2

84

different results with greater epsilon ...  



+ Does not assume any predefined shape on data clusters
 
  - data defined by set of coordinates  (not capable of handling
arbitrary feature spaces)
  - computationally costly... (...)
  - not robust to clusters of varying density
 
=> OPTICS (density-based method)

 unsupervised learning

clustering

DBSCAN  (density-based method)
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 unsupervised learning

clustering

Performance Metrics ?

 

Davies-Bouldin Index
Rand index

Mutual Information based scores
Homogeneity, completeness and V-measure

Fowlkes-Mallows scores
Contingency Matrix

Pair Confusion Matrix

Silhouette coefficient
Calinski-Harabaz index
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https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervised-learning


Silhouette coefficient (between -1 and 1)
for each sample

the higher its value, the more similar the sample is within
its cluster (and not to neighboring clusters).

If most samples have a low or negative value, then the
clustering configuration is not appropriate.

 unsupervised learning

clustering

max(a,b)
b−a

with  the mean distance between a sample and all other
points in the same cluster

a

with  the mean distance between a sample and all other
points in the next nearest cluster

b
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Tr(W )k
Tr(B )k

k−1
N−k

and $B_k$ the intra-cluster dispersion matrix
 

 unsupervised learning

clustering

Performance Metrics ?

Calinski-Harabaz index
 

The higher the Calinski-Harabaz index  the more
dense and well separated the cluster is.

s(k)
k-th

Wk

with $B_k$ the inter-cluster dispersion matrixBk
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 unsupervised learning

unsupervised
learning

Dimension reduction
Clustering
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Conclusion
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Conclusion

supervised
learning

unsupervised
learning

semi-
supervised
learning

Weakly-
supervised

Talk by Ismail Ben Ayed and
Jose Dolz

Friday April 23
 4 pm - Paris time
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Conclusion

Symbolic AI connectionism
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#responsibleAI (biases, ethics)
 

 « a priori » within learning
Hands-on session 2.x

explanable AI (xAI)
 
 

Talk by Narine
Kokhlikyan

Tuesday April 20
 4.20 pm - Paris time

Conclusion
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