Geometric Deep Learning in Medical Imaging

Prof. Hervé Lombaert, ETS Montreal

Summer School on Deep Learning for Medical Imaging 2021

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging,

Geometry & Machine Learning

• How to exploit **Shapes & Geometry** for learning complex data?

Segmentation on Medical Images

• One Example – Finding Lesions on Brain MRIs

Segmentation on Medical Images

• Conv Nets (CNNs) on Images

Kamnitsas et al, DeepMedic, MedIA 2017

1234567

From Images to Surfaces

Why a need to work on Surfaces?

Images vs Surfaces

• Algorithms rely on an Image Grid

Point Coordinates defined as (*x*, *y*, *z*) Coordinates

Neuroimaging – Data is often on surfaces where is (*up, down, left, right*) ?

Why Learning on Surfaces?

Cortical Parcellation

Functional Imaging

Images vs Surfaces

• Exploiting the **Surface Geometry**

Problem:

Points Close in volume – but – Far away on the cortex

Confusing for a learning algorithm

How to Learn on Surfaces?

Convolutions on Surfaces

• Defining Kernels on Curved Spaces

Conv Filter on a Grid

Algorithm:

- **Learns** the Filter parameters (the red bars)
- Supposes neighbors are on a grid

Algorithm:

- **Learns** the Filter parameters (μ 's and σ 's)
- Requires Graph Neighborhoods

Parameterization – Euclidean vs Spectral Coordinates

Cartesian Coordinates versus **Shape (Spectral) Coordinates**

Cartesian Coordinates Equivalent Points → May NOT Overlap in Space Shape Coordinates Equivalent Points → Similar Shape Characteristics

Core Idea Use **Shape Coordinates** for Matching

Reuter, IJCV (2009)

Niethammer, Reuter, Wolter, Bouix, Peinecke, Koo, Shenton, MICCAI (2007)

Qiu, Bitouk, Miller, TMI (2006)

Shi, Lai, Wang, Pelletier, Mohr, Sicotte, Toga, TMI (2014)

Germanaud, Lefevre, Toro, Fischer, Dubois, Hertez, Mangin, Neuroimage (2012)

Same Shape Coordinates
(Same RGB)

Challenge – Anatomical Variability

Complex Shapes, Highly variable

How to find **point correspondence?**

Challenge – Anatomical Variability

One Related Problem – Matching Points between Brains

Beg, Miller, Trouvé, Younes, IJCV (2005) Fischl, Sereno, Tootell, Dale, HBM (1999) Yeo, Sabuncu, Vercauteren, Ayache, Fischl, Golland, TMI (2010) Lombaert, Grady, Polimeni, Cheriet, PAMI (2013) Dense Point Correspondence 300k+ meshes

1234567

Background on Spectral Shape Analysis

How to Represent and Exploit Surfaces?

Spectral Signature

Shape Vibration → Unique **intrinsic** Shape Signature

Method – Spectral Shapes

Method – Spectral Shapes

Lombaert, Grady, Polimeni, Cheriet, IPMI (2011), PAMI (2012)

[Lombaert PAMI'12]

Comparison with State-of-the-Art

Lombaert, Sporring, Siddiqi, IPMI (2013) Lombaert, Grady, Pennec, Ayache, Cheriet, ECCV (2012), IJCV (2014) Lombaert, Grady, Polimeni, Cheriet, IPMI (2011), PAMI (2012)

Learning?

Moving Learning to the Spectral Domain

Convolutions on Surfaces

• Defining Kernels on Curved Spaces

Conv Filter on a Grid

Algorithm:

- **Learns** the Filter params (the red bars)
- Supposes neighbors are **on a grid**

Conv Filters on Surfaces

Algorithm:

– Learns the Filter params (μ 's and σ 's)

 $\widetilde{\mathbf{u}}_i$

 $oldsymbol{\mu}_k, \sigma_k$

- Requires Graph Neighborhoods

Intrinsic Shape Parameterization

Intrinsic Surface Parameterization

Spectral Coordinates

• an Intrinsic Surface Parameterization

Spectral Coordinates Equivalent Points → Similar Shape Characteristics

Approach: Learning on Surfaces

[Lombaert MICCAI'15]

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging, 21

Application: Learning on Surfaces

[Lombaert MICCAI'15]

1 2 3 4 5 6 7

Background on Geometric Deep Learning

How to Learn on Graph Node Data?

Neural Network on Images

$$\underbrace{h_i^{(l+1)}(x)}_{j=1} = \sigma \left(\sum_{j=1}^N \underbrace{h_j^{(l)}(x)}_{j=1} \cdot \underbrace{w_{ij}}_{j} \right)$$

Problem if image content moves
X No invariance to translation

Convolutions on Images

Denkel *et al,* NeurIPS 1988 Fukushima *et al,* BioCyber 1980 One Solution: Let's move along the image √ Invariance to translation

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging, 25

Convolutions on Graphs

- Remember: Convolutions and Fourier
 - Convolution in Euclidean space $\leftarrow \rightarrow$ Multiplication in Fourier space

$$\mathcal{F}\{\boldsymbol{f} \star \boldsymbol{g}\} = \mathcal{F}\{\boldsymbol{f}\} \cdot \mathcal{F}\{\boldsymbol{g}\}$$

Spectral Convolutions on Graphs

• Approximation of **conv. filter** with Chebyshev Polynomials

$$\begin{aligned} \mathbf{f} \star \mathbf{g} &= \mathcal{F}^{-1} \left\{ \mathcal{F} \{ \mathbf{f} \} \cdot \mathcal{F} \{ \mathbf{g} \} \right\} \\ &= \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathbf{T}} \mathbf{g} \right) \odot \left(\mathbf{\Phi}^{\mathbf{T}} \mathbf{f} \right) \text{ In Fourier Space, matrix notation} \\ &= \mathbf{\Phi} \operatorname{diag} \left(\mathcal{F} \{ \mathbf{g} \} \right) \mathbf{\Phi}^{\mathbf{T}} \mathbf{f} \\ \operatorname{diag} \left(\mathcal{F} \{ \mathbf{g} \} \right) \exp \text{ressed in terms of } \lambda \\ &= \mathbf{\Phi} \operatorname{diag} \left(\mathcal{F} \{ \mathbf{g} (\lambda) \} \right) \mathbf{\Phi}^{\mathbf{T}} \mathbf{f} \\ \mathcal{F} \{ \mathbf{g} (\lambda) \} \text{ approximated with Chebyshev Polynomials:} \\ &\approx \mathbf{\Phi} \operatorname{diag} \left(\sum_{k=0}^{K} \theta_k T_k(\lambda) \right) \mathbf{\Phi}^{\mathbf{T}} \mathbf{f} \\ \operatorname{insert} L \text{ with } U\hat{g}(\lambda) U^T = \hat{g}(U \lambda U^T) = \hat{g}(L) \end{aligned}$$

Hammond et al, Harmonic Anal 2011 Bruna et al, ICML 2014 Defferrard et al, NeurIPS 2016 Duvenaud et al, NeurIPS 2015 Kipf, Welling, ICLR 2017 Levie et al, ICLR 2018

 $\theta_0 = -\theta_1$

 $)^{-\frac{1}{2}}$

K

Spectral Convolutions on Graphs

Spectral Convolutions on Graphs

• Exploits Graph Laplacian and Convolutions over Graph Neighbors

Spatial Convolutions on Graphs

Fey et al, CVPR 2018

[Image Courtesy: Masci, Geodesic CNN, 2015]

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging,

30

Spatial Convolutions on Graphs

• Richer Kernels on Tangent Planes of Manifolds

Patch Orientation? Patch Construction?

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging, 31

Spatial Convolutions on Graphs

Construction of Polar Patches

Boscaini *et al*, NeurIPS 2016 Monti *et al*, CVPR 2017 Fey *et al*, CVPR 2018

Limitations of Geometric Deep Learning

What is preventing Generalization to Arbitrary Surfaces?

Challenges in Medical Imaging

• Geometrical Complexity of Surfaces

Surfaces – How to Create & Navigate patches (where is 'up' in a sulcus?)

Problem – Convolutions in Image Space

- Distance Ambiguity
- Volumes vs. Surfaces
- Confusing for Learning Algorithms

Problem – Convolutions in Mesh Space

- Patch construction
- Highly folded surfaces
- Confusing for Learning Filters

Challenges in Medical Imaging

• Representation of Mesh Coordinates

Point Coordinates defined as (x,y,z) Coordinates **Mesh Coordinates?** (x,y,z); (ρ , θ) inadequate in Euclidean Space

Mesh Coordinates Inadequate in Euclidean Space

θ?

03

Challenges in Medical Imaging

Challenges in Medical Imaging

Graph Networks – Two Contributions

(1)

Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation

Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis

One Contribution: Localized Graph Convolutions

How to Navigate Graph Convolutions on Arbitrary Surfaces?

Gopinath et al, MedNeurips 2018, MedIA 2019

Convolutions on Surfaces

• Convolutions on Spectral Embeddings

Convolution on an Image

Graph Convolution on a Brain Surface

Spatial Information as Spectral Encoding

Problem: Spectral bases are **ambiguous to rotation**

Spectral Alignment

Extension of 2D convolutions to irregular grids

Standard convolution on regular grid:

Geometric convolution for embedded graphs:

Graph embedding space

$$z_{ip}^{(l)} = \sum_{j \in \mathcal{N}_i} \sum_{q=1}^{M_l} \sum_{k=1}^{K_l} w_{pqk}^{(l)} \cdot y_{jq}^{(l)} \cdot \varphi(\widehat{\mathbf{u}}_i, \widehat{\mathbf{u}}_j; \mathbf{\Theta}_k^{(l)}) + b_p^{(l)}$$
Parameters are learned
$$\varphi(\widehat{\mathbf{u}}_i, \widehat{\mathbf{u}}_j; \boldsymbol{\mu}_k, \sigma_k) = \exp\left(-\sigma_k \|(\widehat{\mathbf{u}}_j - \widehat{\mathbf{u}}_i) - \boldsymbol{\mu}_k\|^2\right)$$

Spectral Graph Conv Net – Architecture

• Enables classical architectures on brain surfaces

• Operating in the Spectral Domain (not the grid Domain)

Gopinath, Desrosiers, Lombaert, Medical Image Analysis 2018

Spectral Graph Conv Net – Feature Maps

• The Spectral Network – *illustrated*

Gopinath *et al,* 2018

Gopinath, Desrosiers, Lombaert, Medical Image Analysis 2018

Spectral Graph Conv Net – Loss Function

To Learn: Kernel weights, bias, parameters (μ, σ)

Experiments and Results

MindBoggle dataset :

- 101 subjects, seven different sites
- Meshes from 102K to 185K vertices
- 32 manually labeled parcels

Spectral Graph Conv Net – Hyper-parameter Selection

Spectral Graph Conv Net – Training Iterations

• Training a feature map – Its evolution

• Towards resembling **observed cortical parcels**

Spectral Graph Conv Net – Results for Parcellation

• Quantitative Results (86.6% vs FS: 84.4%)

_	Method	Dice overlap (%)	Accuracy (%)	Avg. Hausdorff (mm)
(Euclidean forest	45.87 ± 8.74	49.26 ± 8.32	4.97 ± 1.11
	GC on Euclidean	50.78 ± 10.78	54.24 ± 10.33	5.82 ± 1.66
	Spectral alignment	77.67 ± 3.65	81.87 ± 3.39	2.87 ± 0.47
	Spectral forest	79.89 ± 2.62	81.94 ± 2.54	1.97 ± 0.40
	FreeSurfer	84.39 ± 1.91	85.19 ± 1.98	2.11 ± 0.29
	Ours	85.37 ± 2.36	86.97 ± 2.43	1.75 ± 0.35
	Ours + MRF	86.61 ± 2.45	88.08 ± 2.47	1.66 ± 0.44

Spectral Graph Conv Net – Results for Parcellation

• Qualitative Results (86.6% vs FS: 84.4%)

Reference (Ground Truth)

Advantage: Only 18 seconds per subject VS hours for FreeSurfer

Contributions: Graph Conv

(1)

Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation

1234567

One Contribution: Learnable Graph Pooling

How to Learn Graph Pooling Patterns on Arbitrary Surfaces?

Gopinath et al, IPMI 2019, PAMI 2021

Related Work – Global Average Pooling

Related Work – Hierarchical Differentiable Pooling

Proposed: Learnable Graph Pooling

Learnable Graph Pooling – Building Nodes

Expected convolution value over a cluster

Learnable Graph Pooling – Building Edges

Expected convolution value over a cluster

Expected edge weight between clusters (c,d)

Learnable Graph Pooling – Multiple Layers

Learnable Graph Pooling – Loss Function

Avoids issues of [Ying *et al,* 2018]:

- Hard training of pooling path,
- Spurious local minima

Experiments and Results

Datasets:

- ADNI: 731 brains
- MindBoggle: 101 brains

Experiments:

- Pooling comparison
- Disease classification
- Age prediction

Comparison of Different Pooling Methods

• Pooled Clusters from Subject-sex Classification

Spectral k-means clustering Fixed parcel clusters Clusters learned from our method

Comparison of Different Pooling Methods

• Pooled Clusters from Subject-sex Classification

Gao, Ji, ICML 2019

Learnable Pooling – Results for Disease Classification

<u>Dataset</u>: 731 FreeSurfer Brain Surfaces from ADNI

Ours without Ours with Learnable Pooling **Baseline*** spectral features spectral features Spectral + **Cortical thickness** Cortical thickness Features Cortical thickness + Classification + Sulcal Depth + Sulcal Depth Sulcal Depth NC vs MCI 63 ± 4 63.71 <u>+</u> 5.72 70.79 ± 6.40 65 ± 6 74.03 ± 8.63 76.92 ± 4.78 MCI vs AD Normal vs MCI vs Alzheimer's 89.33 ± 4.30 NC vs AD 80 ± 5 76.00 ± 6.06 *C. Ledig *et al*, 2014 Learnable Graph Pooling, Learnable Graph Pooling, Pointwise information. **No** geometrical information With geometrical information No neighborhood **Geometry**-based **Pooling**

improves Alzheimer's Classification

Average accuracy for disease classification

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging, 64

Learnable Pooling – Results for Brain Age Prediction

- Assumption: Can our model be used as a biomarker for AD?
- Prediction of Alzheimer's age (or Geometry age) differs from Healthy

Contributions: Graph Conv + Pooling

(2)

Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis

Hervé Lombaert, Summer School on Deep Learning for Medical Imaging, 66

1234567

Conclusion: Rethinking Learning on Surfaces

Use Spectral Shape Embeddings

