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     Why weak supervision is 
interesting?
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Deep CNNs are dominating computer vision  
e.g., semantic segmentation  

Cordts et al.,  “The Cityscapes Dataset for Semantic Urban Scene Understanding,” CVPR 2016 3



Cerebellum parcellation 
(Carass et al., Neuroimage 2018)  

 

Brain tissues (6-month infant) 
(Li et al., TMI 2019)  

 

Subcortical structures 
(Dolz et al., Neuroimage 2018) 

 

Brain tumours 
(Njeh et al., CMIG 2015)  

 

Organs at risk
 (Dolz et al., Med. Phys. 2017)  

 

Incidental findings
 (Ben Ayed et al., MICCAI 2014)  

 

… and medical image analysis  
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But, massive and dense annotations are not always available

Full supervision
Weak supervision

(e.g., image-level tags)

• more than 1h per 
image (even 
several hours for 
a medical image)

• Bottleneck for 
learning at large 
scale

• 1s per label per 
image

• Scalable for large 
numbers of labels 
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Semi-supervision with a lot of non-annotated data,  
                                               and a fraction of points annotated

Full annotations Semi-supervised

Figures from Lin et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation, CVPR 2016  6



points scribbles

Car
Parking
Sky
No person

Image tags boxes

Forms of semi/weak supervision: Examples in segmentation
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points scribbles

Car
Parking
Sky
No person

Image tags boxes

Forms of semi/weak supervision: Examples in segmentation

[Marin et al., CVPR 2019],  [Tang et al., ECCV 2018], 
[Lin et al., CVPR 2016], [Khoreva et al. CVPR 2017], 

[Vernaza et al., CVPR 2017], [Kolesnikov and Lampert, ECCV 2016]  
[Dai et al., CVPR 2015], [Bearman et al., ECCV 2016] 

[Pathak et al., ICCV 2015], [Papandreou et al., ICCV 2015] 

[Rajchl et al., TMI 2017]
[Bai et al., MICCAI 2017]
[Kervadec et al., MedIA]
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Full annotations are much more problematic in medical imaging 
          Not anywhere close to the 10k images of Pascal VOC and the 5k of Cityscapes 

Crowdsourcing?
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Full annotations are much more problematic in medical imaging 
          Not anywhere close to the 10k images of Pascal VOC and the 5k of Cityskapes 

Crowdsourcing?

Dense 3D annotations: several hours
(of radiologist time)
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[MRI Prostate segmentation:  Figure from Zhu et al., Boundary-weighted Domain Adaptive Neural Network for 

Prostate MR Image Segmentation ArXiv 2019]

Domain shifts make things worse 
(even with full annotations in one domain)
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[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018]

Domain shifts: within and across modalities 
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Unsupervised domain adaptation  

No labels for the target
We have labels for 
the source domain

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018]
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Bad generalization to the target

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018] 14



 Figures from [Zhang et al., A Curriculum Domain Adaptation Approach to the Semantic 
Segmentation of Urban Scenes TPAMI 2019]

A lot of interest in vision as well: 
Domain shifts are everywhere BUT we cannot label everywhere 

“train” 
GTA

“bus” 
GTA

“train” 
Cityscapes
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Cityscapes (5000 images): labeling of 1 image takes 90 min at average [Cordt et al., CVPR 2016] 

A lot of interest in vision as well: 
Domain shifts are everywhere BUT we cannot label everywhere 

Zurich

Frankfurt
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UDA = SSL + domain shift 
 

 Domain 
shifts     

 
unlabelled     

 labelled     

 SSL      UDA     



Surprisingly in medical image analysis, we are behind

Weakly and semi in PascalVOC

UDA (GTA, Cityscapes)

Weakly and semi
 (Medical images)

UDA
 (Medical images)
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Semi/weak supervision in a nutshell:
We are leveraging unlabelled data with priors  

• Structure-driven priors: Regularization (Part 1)

• Knowledge- and data-driven priors (Part 2) 
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     Part 1
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Regularization 
Laplacian (and CRFs)
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Only labeled points    
Unlabeled 

points    

  Semi-supervised learning (general form) 

22



Only labeled points    
Unlabeled 

points    

  Semi-supervised learning (general form) 
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Only labeled points    
Unlabeled 

points    

  Semi-supervised learning (general form) 

Labeled points     Unlabeled points     
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 Labels
 (binary simplex vectors)    

 e.g.:  simplex probability vectors
 (softmax outputs of the network)    

 e.g.: cross-entropy 

  Semi-supervised learning (general form) 
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 Labels
 (binary simplex vectors)    

 e.g.:  simplex probability vectors
 (softmax outputs of the network)    

 e.g.: cross-entropy 
 e.g.: Laplacian    

  Semi-supervised learning (general form) 
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 Labels
 (binary simplex vectors)    

 e.g.:  simplex probability vectors
 (softmax outputs of the network)    

 e.g.: cross-entropy 
 e.g.: Laplacian    

  Semi-supervised learning (general form) 

• [Weston et al., Deep Learning via semi-supervised embedding, 
ICML 2008]

• [Belkin et al., Manifold regularization: a geometric framework for 
learning from Labeled and Unlabeled Examples, JMLR 2006]

• [Zhu et al., Semi-Supervised Learning Using Gaussian Fields and Harmonic 

Functions, ICML 2003] 
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  Semi-supervision loss for segmentation 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018]
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 On the vertices of the simplex (binary variables), 
this is exactly the Potts model in Conditional 

Random Fields 
(e.g., Dense CRFs)!   

  Semi-supervision loss for segmentation 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018]
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 SGD   Partial CE only + direct CRF loss Ground truth

  Semi-supervision loss for segmentation 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018] 
[Marin et al.,  Beyond gradient descent for regularized segmentation losses, CVPR 2019] 30



   

  Semi-supervision loss for segmentation 

The exciting part in this plot:

 Dense CRF with SGD gets you 97.6% of full supervision 
performance with 3% of the labels!

    

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018] 
[Marin et al.,  Beyond gradient descent for regularized segmentation losses, CVPR 2019] 31



   

  Semi-supervision loss for segmentation 

The disturbing part (for those who know classical CRFs):
          Dense CRF is not supposed to be better than grid CRF

    

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018] 
[Marin et al.,  Beyond gradient descent for regularized segmentation losses, CVPR 2019] 32



   

  Some applications of CRF loss in MICCAI 
 White (FN); Magenta (FP); Green (TP) 

• Figures from Qu et al., Weakly Supervised Deep Nuclei Segmentation using Points Annotation in Histopathology Images, 
MIDL 2019 [Histology, point annotation]

• Ji et al., Scribble-Based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation, MICCAI 2019  
     [Brain tumor images, scribble annotations] 33



Regularization 
entropy
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Entropy minimization for SSL

• Grandvalet & Bengio, Semi-supervised learning by entropy minimization, NIPS 2005
• Gomes et al., Discriminative clustering by regularized information maximization, NIPS 2010 

Shannon Entropies: “unsupervised cross-entropies (with unknown labels)”
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Effect of the entropy (why is it good for SSL?):
It makes the predictions confident (like cross-entropy)
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Without adaptation Entropy minimizationInput image + GT

Entropy minimization for UDA
 

Images from Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019 
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Entropy minimization for UDA
 

Images from Bateson et al., Source-relaxed domain adaptation for segmentation, MICCAI 2020 38



Entropy minimization for UDA
 

Images from Bateson et al., Source-relaxed domain adaptation for segmentation, MICCAI 2020 

 Ground Truth  No adaptation Entropy min Oracle
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Why entropy minimization is good
(It increases the margin between the classes)

High entropy
(low confidence)

Low entropy
(high confidence)
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Effect of the entropy (why is it good for SSL?):
It increases the margin between the classes

Figures from Zou et al., Confidence regularized self training, ICCV 2019 

Image classification UDA on VisDA17 data set: Feature visualization for 
source model (left) and min-entropy (lower bound on Shannon) minimization (right) - 

equivalent to self training (clarified in the next slide)  
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Difficulty of optimizing entropy

how is gradient here?
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Difficulty of optimizing entropy

and how is gradient here?
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Difficulty of optimizing entropy

and how is gradient here?

Typically we add other cues to facilitate optimization and avoid trivial solutions
(more on this later) 
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Softmax output
Note: Ignoring the network parameters to simplify notation   

  Avoiding the trivial solutions of entropy minimization 
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  Avoiding the trivial solutions of entropy minimization 

Min entropy
(max confidence)   
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  Avoiding the trivial solutions of entropy minimization 

This bad solution also has 
a minimum entropy!!!
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  Avoiding the trivial solutions of entropy minimization 

Marginal probabilities of the labels
-- Class proportion

-- Region size (normalized) in segmentation
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  Avoiding the trivial solutions of entropy minimization 

Balanced solution maximizes the 
entropy of label marginal
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  Maximizing the mutual info (MI) 
(between data points and their latent labels) 

I(X,Y) = H(Y) – H(Y/X)

MI = Entropy (label marginal) – Entropy (posterior)

Standard and old in clustering, e.g.,:
Gomes et al., Discriminative clustering by regularized information maximization, NIPS 2010 
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  Maximizing the mutual info (MI) 
(between data points and their latent labels) 

MI = Entropy (label marginal) – Entropy (posteriors)

Standard and old in clustering:
Gomes et al., Discriminative clustering by regularized information maximization, NIPS 2010 

KL (label marginal || uniform)

Up to a constant
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  Maximizing the mutual info (MI) 
(between data points and their latent labels) 

MI = Entropy (label marginal) – Entropy (posteriors)

Standard and old in clustering:
Gomes et al., Discriminative clustering by regularized information maximization, NIPS 2010 

KL (label marginal || uniform)

Up to a constant

Other priors 
(learned, known)
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  Maximizing the mutual info (MI) 
(between data points and their latent labels) 

MI = Entropy (label marginal) – Entropy (posteriors)

Standard and old in clustering:
Gomes et al., Discriminative clustering by regularized information maximization, NIPS 2010 

KL (label marginal || uniform)

Up to a constant

Other distances, relaxation of equality constraints
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  Maximizing the mutual info (MI) 
(between data points and their latent labels) 

Maximizing MI or its parts/proxies/generalizations
 is SOTA almost everywhere!

Unsupervised domain adaptation, e.g.,
Liang et al., ICML’20

Bateson et al., MICCAI’20

Semi-supervised learning, e.g.
[Berthelot et al., NeurIPS’19]
[Kervadec et al., MedIA’19]

Few-shot learning, e.g.,
[Boudiaf et al., NeurIPS’20]

[Dhillion et al., ICLR’20]

Deep clustering 
&

Unsupervised Representation Learning, e.g.,
Asano et al., ICLR’20
Jabi et al., TPAMI’20
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              Constrained CNNs
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Constrained optimization (in CNNs) 

Knowledge vs data driven priors
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Constrained optimization (in CNNs) 

Knowledge vs data driven priors

Knowledge-driven priors
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Constrained optimization (in CNNs) 

Knowledge vs data driven priors

Knowledge-driven priors

Data-driven priors
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Constrained optimization (in CNNs) 

Knowledge vs data driven priors

Knowledge-driven priors

Data-driven priors
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Constrained optimization (in CNNs) 

Knowledge vs data driven priors

Knowledge-driven priors

Data-driven priors
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Constrained optimization (in CNNs) 

Knowledge vs data driven priors

Knowledge-driven priors

Data-driven priors

Both constrain 
the search space
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Data-driven priors (cues) 

Image tags

• Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
• Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.

Image tags
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Data-driven priors (cues) 

Image tags

Bounding boxes

Image tags Bounding 
boxes

• Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
• Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.
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Data-driven priors (cues) 

Image tags

Bounding boxes

Image tags Bounding 
boxes

Scribbles

Scribbles

• Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
• Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.
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Data-driven priors (cues) 

Image tags

Bounding boxes

Image tags Bounding 
boxes

Scribbles

Scribbles

Points

Points

• Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
• Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.
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Data-driven priors (cues) 

Image captions

• Maninis et al. Deep extreme cut: From extreme points to object segmentation. CVPR 2018

Another data-driven priors

A boy jumping on a skateboard

Extreme points

Image from Maninis et al, CVPR'18 
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From global cues to pixel labels

Image tags Bounding 
boxes

Scribbles Points
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From global cues to pixel labels

Convolutional layers

FC Layers

Class 
scores

Step 1: Get a classification CNN

Parrot

Dog

Cat
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From global cues to pixel labels

Step 2: Modify the last layers

Convolutional layers

Class 
scores

GAP a1

a2

aK

Parrot

Dog

Cat
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From global cues to pixel labels

Step 2: Modify the last layers

Convolutional layers

Class 
scores

GAP a1

a2

aK

Parrot

Dog

Cat

Class score
(logits)
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From global cues to pixel labels

Convolutional layers

Class 
scores

GAP a1

a2

aK

Parrot

Dog

Cat

Step 3: Get the CAMs 
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From global cues to pixel labels

• Zhou et al., Learning deep features for discriminative localization. CVPR 2016
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From global cues to pixel labels

• Zhou et al., Learning deep features for discriminative localization. CVPR 2016

These activations maps can be used as pseudo-masks
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From global cues to pixel labels

Problem: they focus only on highly discriminative regions
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From global cues to pixel labels

Problem: they focus only on highly discriminative regions

Incorporate saliency maps

• Oh et al. Exploiting Saliency for Object Segmentation from Image Level Labels. CVPR 2017
• Fan et al. Learning Integral Objects With Intra-Class Discriminator for Weakly-Supervised Semantic Segmentation. CVPR 2020 75



From global cues to pixel labels

Problem: they focus only on highly discriminative regions

Region mining

• Wei et al. Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach. CVPR 2017
• Wang et al. Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features. CVPR 2018 76



From global cues to pixel labels

• Nguyen et al. A novel segmentation framework for uveal melanoma based on magnetic resonance imaging and class activation maps. MIDL 2019.

CAMs in the medical domain
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From global cues to pixel labels

• Chen et al. Exploiting confident information for weakly supervised prostate segmentation based on image-level labels. SPIE Medical Imaging 2020

CAMs in the medical domain

We will come to this later
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Constrained optimization (in CNNs) 

Knowledge-driven priors

Common priors in natural images

Target Size

• Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
• Xu et al., Learning to Segment Under Various Forms of Weak Supervision, CVPR 2015
• Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17 79



Constrained optimization (in CNNs) 

Knowledge-driven priors

Common priors in natural images

Target Location

• Remez et al. Learning to segment via cut-and-paste. ECCV 2018
• Georgakis et al Synthesizing training data for object detection in indoor scenes. RSS 2017
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Constrained optimization (in CNNs) 

Knowledge-driven priors

Common priors in natural images

• Deselaers et al. Localizing objects while learning their appearance. ECCV 2010

Number of 
instances
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Constrained optimization (in CNNs) 

Knowledge-driven priors

Common priors in natural images

• Hou et al. Deeply supervised salient object detection with short connections. CVPR 2017
• Li et al. Instance-level salient object segmentation. CVPR 2017

Contrast
Foreground/Background

Images from Hou et al, CVPR'17

Saliency
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Constrained optimization (in CNNs) 

Knowledge-driven priors

Common priors in natural images

• Tokmakov et al.  Weakly-supervised semantic segmentation using motion cues. ECCV 2016
• Pathak et al. Learning features by watching objects move. CVPR 2017

Motion

Images from the DAVIS Challenge Dataset
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Constrained optimization (in CNNs) 

Knowledge-driven priors

Anatomical priors
Partial labeled data

(exploit target relationships)

What about priors in the 
medical domain?
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Equality constraints

Constrained optimization (in CNNs) 

Known size

CNN predictionsSmaller Larger
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Equality constraints

Constrained optimization (in CNNs) 

Known size

Constrain the CNN predictions
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Equality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

Jia et al. Constrained deep weak supervision for histopathology image segmentation. IEEE TMI 2017

Any CNN architecture

Input 
(Histology image)

 
 

Output 
(Pixel-wise prediction)
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Equality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

Predicted relative 
size (%)

 
 

Predicted size 
given by experts

 
 

Reminder: ½ KL is an upper bound on L
2
 for 

simplex vectors (Pinsker’s inequality)Additional term
 
 

Jia et al. Constrained deep weak supervision for histopathology image segmentation. IEEE TMI 2017

Any CNN architecture

Input 
(Histology image)

 
 

Output 
(Pixel-wise prediction)
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Equality constraints (e.g, KL)

Constrained optimization (in CNNs) 

Unsupervised domain 
adaptation Partially labeled data
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Equality constraints (e.g, KL): Curriculum DA

Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17

Constrained optimization (in CNNs) 
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Equality constraints (e.g, KL): Curriculum DA

Constrained optimization (in CNNs) 

Any CNN architecture

Image segmentation

Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17
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Equality constraints (e.g, KL): Curriculum DA

Constrained optimization (in CNNs) 

Any CNN architecture

Image segmentation

CE on supervised 
images (i.e., source)

 
 

Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17
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Equality constraints (e.g, KL): Curriculum DA

Constrained optimization (in CNNs) 

Any CNN architecture

Image segmentation

CE on supervised 
images (i.e., source)

 
 

Additional term
 
 

Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17
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Equality constraints (e.g, KL): Curriculum DA

Constrained optimization (in CNNs) 

Any CNN architecture

Image segmentation

CE on supervised 
images (i.e., source)

 
 

Additional term
 
 

Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17
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Equality constraints (e.g, KL): Curriculum DA

Constrained optimization (in CNNs) 

Any CNN architecture

Image segmentation

CE on supervised 
images (i.e., source)

 
 

Additional term
 
 

Predicted size
 
 

From predicted image
 
 

Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17
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Equality constraints (e.g, KL): Curriculum DA

Constrained optimization (in CNNs) 

Images from [Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’17]
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Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 97



Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

Prior on the proportion

Images from [Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 98



Constrained optimization (in CNNs) 

Main objective:

Fully labeled images

Prior-aware loss

Equality constraints (e.g, KL): Partial annotations

Partially labeled images

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 99



Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

Averaged predicted 
distribution

Prior-aware loss

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19]

On partially labeled images
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Constrained optimization (in CNNs) 

Embed prior knowledge

Real label distribution

Equality constraints (e.g, KL): Partial annotations

Average predicted distribution

Prior-aware loss

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 101



Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

Prior-aware loss

KL can be expanded

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 102



Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

Prior-aware loss KL can be expanded

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19]

This is problematic (average distribution of p̂ organ sizes inside log!!)
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Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

Prior-aware loss KL can be expanded

  Stochastic primal-dual gradient

(split terms updated independently)

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19]

This is problematic (average distribution of p̂ organ sizes inside log!!)
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Constrained optimization (in CNNs) 

Equality constraints (e.g, KL): Partial annotations

Prior-aware loss KL can be expanded

  Stochastic primal-dual gradient

(split terms updated independently)

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19]

This is problematic (average distribution of p̂ organ sizes inside log!!)

primal dual
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Constrained optimization (in CNNs) 

Equality constraints 

Images from  [Fong et al., Understanding Deep Networks via Extremal Perturbations and Smooth Masks, ICCV’19] 

Extremal perturbations
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Constrained optimization (in CNNs) 

Equality constraints 

Images from  [Fong et al., Understanding Deep Networks via Extremal Perturbations and Smooth Masks, ICCV’19] 

Extremal perturbations

1 - Relax the mask

2 - Vectorize and sort m
(non-decreasing order)

3 - If m satisfies the area 
constraints (a) exactly
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Constrained optimization (in CNNs) 

Equality constraints 

Images from  [Fong et al., Understanding Deep Networks via Extremal Perturbations and Smooth Masks, ICCV’19] 

Extremal perturbations

1 - Relax the mask

2 - Vectorize and sort m
(non-decreasing order)

3 - If m satisfies the area 
constraints (a) exactly
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Constrained optimization (in CNNs) 

Equality constraints (at pixel-level)

Spatial priors on GTA5

Images from  [Zou et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV’18] 109



Constrained optimization (in CNNs) 

Equality constraints (at pixel-level)

Zou et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV’18 

Objective:
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Constrained optimization (in CNNs) 

Equality constraints (at pixel-level)

Source images
Target images

Zou et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV’18 

Objective:

Proposals
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Constrained optimization (in CNNs) 

Equality constraints (at pixel-level)

This becomes two KL

Zou et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV’18 

Objective:
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Constrained optimization (in CNNs) 

Equality constraints (at pixel-level)

Weights the proposals

Zou et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV’18 

Objective:
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Constrained optimization (in CNNs) 

Equality constraints (at pixel-level)

Image Ground Truth Only source CBST CBST-SP

Spatial prior

Images from  [Zou et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV’18] 114



Inequality constraints 

Constrained optimization (in CNNs) 

Prior size knowledge
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Inequality constraints 

Constrained optimization (in CNNs) 

CNN predictions

Prior size knowledge
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Inequality constraints 

Constrained optimization (in CNNs) 

CNN predictions

Prior size knowledge

Smaller
117



Inequality constraints 

Constrained optimization (in CNNs) 

CNN predictions Larger

Prior size knowledge

Smaller
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Inequality constraints 

Constrained optimization (in CNNs) 

CNN predictions Larger

Prior size knowledge

Smaller
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Inequality constraints 

Constrained optimization (in CNNs) 

CNN predictionsSmaller Larger

Prior size knowledge

120



Constrained optimization (in CNNs) 

Inequality constraints 

Images from [Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR’19] 121



Constrained optimization (in CNNs) 

We focus on this now

Inequality constraints

Images from [Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR’19] 122



Constrained optimization (in CNNs) 

Class-ratio priors

ℓ1-normalized histogram (source)

It relaxes the class prior 
constraint Estimated size on the prediction 

Inequality constraints 

Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR’19 123



Constrained optimization (in CNNs) 

Class-ratio priors

ℓ1-normalized histogram (source)

It relaxes the class prior 
constraint Estimated size on the prediction 

Inequality constraints 

Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR’19 124



Constrained optimization (in CNNs)

Suppression
“Person”

Information is given in
the form of image-tags

Inequality constraints

[Pathak et al., Constrained Convolutional Neural Networks for Weakly Supervised Segmentation, ICCV’15] 125



[Pathak et al., Constrained Convolutional Neural Networks for Weakly Supervised Segmentation, ICCV’15]

Constrained optimization (in CNNs) 

Information is given in
the form of image-tags

Inclusion 
(or existence) 

“Car”

Inequality constraints
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Constrained optimization (in CNNs) 

Information is given in
the form of image-tags

Target Size
a > 1 

“Car”

Inequality constraints

[Pathak et al., Constrained Convolutional Neural Networks for Weakly Supervised Segmentation, ICCV’15] 127



Constrained optimization (in CNNs) 

How we can benefit from this in the medical domain?

Image-tag information
 
 

No cavity
 
 

Cavity
 
 

For negative image tags 
 
 

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Constrained optimization (in CNNs) 

How we can benefit from this in the medical domain?

Image-tag information
 
 

No cavity
 
 

Cavity
 
 

For negative image tags 
 
 

Size information
 
 

For positive image tags 
 
 

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Inequality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

Full 
annotations

Semi-supervised

Full annotations

Partial annotations for cross-entropy
[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Inequality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

Objective
 
 

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Inequality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

On annotated pixels
 
 

Objective
 
 

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Inequality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

Objective
 
 

On annotated pixels
 
 

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Inequality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]
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Inequality constraints (e.g, L2 penalty)

Constrained optimization (in CNNs) 

Can we do it better?

It predicts the size

[Kervadec et al., Curriculum semi-supervised segmentation. MICCAI’19]
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Take-home message

● Imposing constraints helps weakly-supervised segmentation learning by 
restricting plausible segmentations on unlabeled images

● Few constraints have been explored under low-labeled data regime

● Room for improvement (many opportunities) 
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Thank you!
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